首页> 美国卫生研究院文献>other >Transforming a Blue Copper into a Red Copper Protein: Engineering Cysteine and Homocysteine into the Axial Position of Azurin using Site-Directed Mutagenesis and Expressed Protein Ligation
【2h】

Transforming a Blue Copper into a Red Copper Protein: Engineering Cysteine and Homocysteine into the Axial Position of Azurin using Site-Directed Mutagenesis and Expressed Protein Ligation

机译:转换一个蓝色铜变成紫铜蛋白质:工程半胱氨酸和同型半胱氨酸到阿苏林的轴向位置采用定点突变和表达蛋白质连接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interactions of the axial ligands with copper are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of blue copper sites with a weak axial ligand to green copper sites containing a medium strength axial ligand has been demonstrated in cupredoxins, converting blue copper sites to a red copper site with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (RL) of absorption at 447 nm over that at 621 nm. While no axial Cu-S(Cys121) interaction in Met121Cys was detectable by the extended x-ray absorption fine structure (EXAFS) at pH 5, similar to what was observed in WT azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 Å is clearly visible at higher pH. Despite the higher RL and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A|| = 54 × 10−4 cm−1 at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A|| = 87 × 10−4 cm−1 at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with the nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (RL= 1.5, and A|| = 180 × 10−4 cm−1) and Cu-S(Cys) distance (2.22 Å) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 ± 3 mV for Met121Cys azurin and 113 ± 6 mV for Met121Hcy at pH 7. The results strongly support the “coupled distortion” model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号