首页> 美国卫生研究院文献>other >A rapid reproducible on-the-fly orthogonal array optimization method for targeted protein quantification by LC/MS and its application for accurate and sensitive quantification of carbonyl reductases in human liver
【2h】

A rapid reproducible on-the-fly orthogonal array optimization method for targeted protein quantification by LC/MS and its application for accurate and sensitive quantification of carbonyl reductases in human liver

机译:一种快速可重复的通过LC / ms和其在人类肝羰基还原酶的准确和灵敏的定量应用上即时用于靶向蛋白质定量正交阵列优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Liquid chromatography (LC)/mass spectrometry (MS) in selected-reactions-monitoring (SRM) mode provides a powerful tool for targeted protein quantification. However, efficient, high-throughput strategies for proper selection of signature peptides (SP) for protein quantification and accurate optimization of their SRM conditions remain elusive. Here we describe an on-the-fly, orthogonal array optimization (OAO) approach that enables rapid, comprehensive, and reproducible SRM optimization of a large number of candidate peptides in a single nanoflow-LC/MS run. With the optimized conditions, many peptide candidates can be evaluated in biological matrices for selection of the final SP. The OAO strategy employs a systematic experimental design that strategically varies product ions, de-clustering energy and collision energy in a cycle of 25 consecutive SRM trials, which accurately reveals the effects of these factors on the single-to-noise ratio of a candidate peptide, and optimizes each. As proof of concept, we developed a highly sensitive, accurate, and reproducible method for the quantification of carbonyl reductases CBR1 and CBR3 in human liver. Candidate peptides were identified by nano-LC/LTQ/Orbitrap, filtered using a stringent set of criteria, and subjected to OAO. After evaluating both sensitivity and stability of the candidates, two SP were selected for quantification of each protein. As a result of the accurate OAO of assay conditions, sensitivities of 80 and 110 amol were achieved for CBR1 and CBR3, respectively. The method was validated and used to quantify the CBRs in 33 human liver samples. The mean level of CBR1 was 93.4±49.7 (range: 26.2–241) ppm of total protein, and for CBR3 was 7.69±4.38 (range: 1.26–17.9) ppm. Key observations of this study are that: i) evaluation of peptide stability in the target matrix is essential for final selection of the SP; ii) utilization of two unique SP contributes to high reliability of target protein quantification; and iii) it is beneficial to construct calibration curves using standard proteins of verified concentrations to avoid severe biases that may result if synthesized peptides alone are used. Overall, the OAO method is versatile and adaptable to high-throughput quantification of validated biomarkers identified by proteomic discovery experiments.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号