首页> 美国卫生研究院文献>other >Modeling Genetic and Environmental Factors in Biological Systems Using Structural Equation Modeling: An Application to Energy Balance
【2h】

Modeling Genetic and Environmental Factors in Biological Systems Using Structural Equation Modeling: An Application to Energy Balance

机译:使用结构方程模型建模生物系统中的遗传与环境因素:能量平衡应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To improve our understanding of the role(s) that genes and environmental factors play in a complex disease, we need statistical approaches that model multiple factors simultaneously in a hierarchical manner that aims to reflect the underlying biological system(s). We present an approach that models genes as latent constructs, defined by multiple variants (single nucleotide polymorphisms, SNPs) within each gene, using the multivariate statistical framework of structural equation modeling (SEM) to model multiple, putative genetic and environmental factors involved in energy imbalance (‘obesity’) using subjects from a colon polyp case-control study. We found that modeling constructs for the leptin receptor (LEPR) gene (defined by SNPs rs1137100, rs1137101, rs1805096, rs6588147) and the fat mass-and-obesity-associated (FTO) gene (defined by SNPs rs9939609, rs1421085, rs8044769) together with demographic (age, race, gender), physical activity, diet and sleep variables increased the strength of the association (βstd=−0.13 ± 0.06; p=0.03) between the FTO and obesity constructs compared to that observed in a reduced model with only the FTO and LEPR constructs and demographic variables (βstd=−0.05 ± 0.03; p=0.08). Several indirect paths, including an association between the LEPR and physical activity constructs (βstd=−0.15 ± 0.04; p=0.01), were found. Interestingly, removing FTO revealed a marginal association between the LEPR and obesity constructs (βstd=0.24 ± 0.14; p=0.09), which was not present when FTO was in the model. These results illustrate the importance of modeling multiple relevant genes and other factors in the same model, which is a major strength of this approach. Moreover, our latent gene construct approach exploits the correlation structure between SNPs while capturing overall effects of variation in that gene, which will enable better utilization of candidate gene and genome-wide SNP array data.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号