首页> 美国卫生研究院文献>other >Metabolism of the Anti-Tuberculosis Drug Ethionamide by Mouse and Human FMO1 FMO2 and FMO3 and Mouse and Human Lung Microsomes
【2h】

Metabolism of the Anti-Tuberculosis Drug Ethionamide by Mouse and Human FMO1 FMO2 and FMO3 and Mouse and Human Lung Microsomes

机译:小鼠和人类FMO1FMO2和FMO3以及小鼠和人类肺微粒体对抗结核药物乙硫酰胺的代谢

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world’s population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.
机译:结核病(TB)是由结核分枝杆菌感染引起的,并且在全世界仍然是地方性流行,感染了世界三分之一的人口。多药耐药菌株的流行使得必须使用毒性更大的二线药物,如乙硫酰胺(ETA),这是一种需要生物激活才能产生毒性的前药。结核分枝杆菌拥有一种黄素单加氧酶(EtaA),该黄酮单加氧酶首先将ETA氧化为亚砜,然后氧化为2-乙基-4-氨基吡啶,大概是通过涉及亚硫酸的第二次氧化。 ETA还是哺乳动物含黄素单加氧酶(FMO)的底物。我们检查了表达的人类和小鼠FMO对ETA以及肝和肺微粒体的活性。所有FMO将ETA转化为S-氧化物(ETASO),这是生物活化的第一步。与结核分枝杆菌相比,第二次S-加氧到亚硫酸的速度很慢。小鼠肝和肺微粒体以及表达活性FMO的个体的人肺微粒体以与表达FMO相同的方式氧化了ETA,证实了该反应在主要靶器官中发挥着治疗作用(肺)和毒性(肝脏)。硫脲的抑制作用以及SKF-525A的抑制作用缺乏证实了ETASO的形成主要是通过FMO,尤其是在肺中。谷胱甘肽以浓度依赖的方式减弱了ETASO的产生。人肝中的FMO3可能会增加ETA的毒性和/或影响ETA给药的功效。此外,基于FMO2遗传多态性,可能会对人肺的功效和毒性产生治疗意义,尽管还需要进一步的研究来证实这一建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号