首页> 美国卫生研究院文献>Biophysical Journal >Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position
【2h】

Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position

机译:微管反馈和LET-99依赖的拉力控制可确保稳固的主轴位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During asymmetric division of the zygote, to properly distribute cell fate determinants, the mitotic spindle is asymmetrically localized by a combination of centering and cortical-pulling microtubule-mediated forces, the dynamics of the latter being regulated by mitotic progression. Here, we show a, to our knowledge, novel and additional regulation of these forces by spindle position itself. For that, we observed the onset of transverse spindle oscillations, which reflects the burst of anaphase pulling forces. After delaying anaphase onset, we found that the position at which the spindle starts to oscillate was unchanged compared to control embryos and uncorrelated to anaphase onset. In mapping the cortical microtubule dynamics, we measured a steep increase in microtubule contact density after the posterior centrosome reached the critical position of 70% of embryo length, strongly suggesting the presence of a positional switch for spindle oscillations. Expanding a previous model based on a force-generator temporal control, we implemented this positional switch and observed that the large increase in microtubule density accounted for the pulling force burst. Thus, we propose that the spindle position influences the cortical availability of microtubules on which the active force generators, controlled by cell cycle progression, can pull. Importantly, we found that this positional control relies on the polarity-dependent LET-99 cortical band, the boundary of which could be probed by microtubules. This dual positional and temporal control well accounted for our observation that the oscillation onset position resists changes in cellular geometry and moderate variations in the active force generator number. Finally, our model suggests that spindle position at mitosis end is more sensitive to the polarity factor LET-99, which restricts the region of active force generators to a posterior-most region, than to microtubule number or force generator number/activity. Overall, we show that robustness in spindle positioning originates in cell mechanics rather than biochemical networks.
机译:在合子的不对称分裂过程中,为了正确分配细胞命运决定因素,有中心和皮层牵拉微管介导的力的组合使有丝分裂纺锤体不对称定位,后者的动力学受有丝分裂进程调节。在此,据我们所知,通过主轴位置本身对这些力进行了新颖且附加的调节。为此,我们观察到了横向主轴振荡的发生,这反映了后期拉力的爆发。在延迟后期发作之后,我们发现纺锤体开始振荡的位置与对照胚胎相比没有变化,并且与后期发作无关。在绘制皮层微管动力学图谱时,我们测量了后中心体到达胚胎长度的70%的临界位置后,微管接触密度的急剧增加,强烈暗示了主轴振荡存在位置开关。在基于力发生器时间控制的基础上扩展了先前的模型,我们实现了此位置开关,并观察到微管密度的大幅增加是拉力爆发的原因。因此,我们提出纺锤体的位置会影响微管的皮质可用性,受细胞周期进程控制的主动力产生器可牵拉微管的皮质可用性。重要的是,我们发现这种位置控制依赖于极性相关的LET-99皮质带,其边界可以被微管探测到。这种双重位置和时间控制很好地解释了我们的观察结果,即振荡开始位置可以抵抗蜂窝状几何结构的变化以及主动力发生器数量的适度变化。最后,我们的模型表明,有丝分裂末端的纺锤体位置对极性因子LET-99更为敏感,极性因子LET-99将主动力产生器的区域限制在最后一个区域,而不是微管数量或力产生器的数量/活动。总体而言,我们表明主轴定位的鲁棒性源自细胞力学而非生化网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号