【2h】

Hydrodynamics of the leucon sponge pump

机译:leucon海绵泵的流体力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Leuconoid sponges are filter-feeders with a complex system of branching inhalant and exhalant canals leading to and from the close-packed choanocyte chambers. Each of these choanocyte chambers holds many choanocytes that act as pumping units delivering the relatively high pressure rise needed to overcome the system pressure losses in canals and constrictions. Here, we test the hypothesis that, in order to deliver the high pressures observed, each choanocyte operates as a leaky, positive displacement-type pump owing to the interaction between its beating flagellar vane and the collar, open at the base for inflow but sealed above. The leaking backflow is caused by small gaps between the vaned flagellum and the collar. The choanocyte pumps act in parallel, each delivering the same high pressure, because low-pressure and high-pressure zones in the choanocyte chamber are separated by a seal (secondary reticulum). A simple analytical model is derived for the pump characteristic, and by imposing an estimated system characteristic we obtain the back-pressure characteristic that shows good agreement with available experimental data. Computational fluid dynamics is used to verify a simple model for the dependence of leak flow through gaps in a conceptual collar–vane–flagellum system and then applied to models of a choanocyte tailored to the parameters of the freshwater demosponge to study its flows in detail. It is found that both the impermeable glycocalyx mesh covering the upper part of the collar and the secondary reticulum are indispensable features for the choanocyte pump to deliver the observed high pressures. Finally, the mechanical pump power expended by the beating flagellum is compared with the useful (reversible) pumping power received by the water flow to arrive at a typical mechanical pump efficiency of about 70%.
机译:类类海绵体是过滤器-喂食器,具有复杂的分支吸入管和呼出管的系统,该系统从密排的绒毛细胞腔室进出。这些软骨细胞腔中的每一个都容纳许多充当泵送单元的软骨细胞,可提供克服运河和狭窄区域中系统压力损失所需的相对较高的压力上升。在这里,我们检验了以下假设:为了传递观察到的高压,由于其跳动的鞭毛叶片和衣领之间的相互作用,每个绒毛膜细胞都作为泄漏的正排量泵运行,在底部开放供流入但密封以上。泄漏的回流是由带叶片的鞭毛和衣领之间的小间隙引起的。绒毛膜细胞泵并行运行,每个泵都提供相同的高压,因为绒毛膜细胞腔室中的低压区和高压区被密封件(次级网状结构)隔开。为泵的特性推导了一个简单的分析模型,通过施加一个估计的系统特性,我们获得了背压特性,该背压特性与可用的实验数据具有很好的一致性。计算流体动力学被用来验证一个简单的模型,该模型对通过概念领口-叶片-鞭毛系统中的间隙的泄漏流量的依赖性,然后将其应用于针对淡水海绵体参数定制的软骨细胞模型,以详细研究其流量。发现覆盖衣领上部的不透水的糖萼网和次级网状结构都是穿梭细胞泵输送观察到的高压必不可少的特征。最后,将跳动鞭毛所消耗的机械泵浦功率与水流接收到的有用的(可逆)泵浦功率进行比较,以达到约70%的典型机械泵效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号