首页> 美国卫生研究院文献>Materials >Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures
【2h】

Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures

机译:非稳态温度下潮湿环境中牙科生物医学纳米材料的硬度和耐磨性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study discusses a quantitative fatigue evaluation of polymer–ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.
机译:本研究讨论了用于牙齿修复的聚合物陶瓷复合材料的定量疲劳评估,即商用材料(Filtek Z550)和实验材料Ex-nano(G),Ex-flow(G)。他们的评估基于以下描述符:显微硬度,耐刮擦性和滑动磨损。为了反映环境退化条件的因素,使用执行热循环算法的特殊计算机控制设备模拟了热疲劳。用于表面强度和磨损测试的样品经历了10次水热疲劳循环。在进行热循环之前先进行老化,这意味着将标本浸入37°C的人造唾液中30天。显微硬度测试采用维氏硬度测试方法进行。划痕测试是使用Rockwell金刚石圆锥压头进行的。在人造唾液的存在下,对氧化铝球进行了圆盘滑动摩擦试验。发现热循环疲劳与显微硬度之间存在直接正相关。热循环后,实验复合材料磨损的主要机理是从摩擦表面上去除薄片形式的材料碎片(剥落)。水热疲劳与机械疲劳具有协同作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号