首页> 美国卫生研究院文献>Micromachines >Buoyancy-Free Janus Microcylinders as Mobile Microelectrode Arrays for Continuous Microfluidic Biomolecule Collection within a Wide Frequency Range: A Numerical Simulation Study
【2h】

Buoyancy-Free Janus Microcylinders as Mobile Microelectrode Arrays for Continuous Microfluidic Biomolecule Collection within a Wide Frequency Range: A Numerical Simulation Study

机译:无浮力的Janus微缸作为移动微电极阵列用于在宽频率范围内连续微流体生物分子收集:数值模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We numerically study herein the AC electrokinetic motion of Janus mobile microelectrode (ME) arrays in electrolyte solution in a wide field frequency, which holds great potential for biomedical applications. A fully coupled physical model, which incorporates the fluid-structure interaction under the synergy of induced-charge electroosmotic (ICEO) slipping and interfacial Maxwell stress, is developed for this purpose. A freely suspended Janus cylinder free from buoyancy, whose main body is made of polystyrene, while half of the particle surface is coated with a thin conducting film of negligible thickness, will react actively on application of an AC signal. In the low-frequency limit, induced-charge electrophoretic (ICEP) translation occurs due to symmetric breaking in ICEO slipping, which renders the insulating end to move ahead. At higher field frequencies, a brand-new electrokinetic transport phenomenon called “ego-dielectrophoresis (e-DEP)” arises due to the action of the localized uneven field on the inhomogeneous particle dipole moment. In stark contrast with the low-frequency ICEP translation, the high-frequency e-DEP force tends to drive the asymmetric dipole moment to move in the direction of the conducting end. The bidirectional transport feature of Janus microspheres in a wide AC frequency range can be vividly interpreted as an array of ME for continuous loading of secondary bioparticles from the surrounding liquid medium along its direction-controllable path by long-range electroconvection. These results pave the way for achieving flexible and high-throughput on-chip extraction of nanoscale biological contents for subsequent on-site bioassay based upon AC electrokinetics of Janus ME arrays.
机译:我们在此数值研究Janus移动微电极(ME)阵列在电解质溶液中在宽电场频率下的交流电运动,这为生物医学应用提供了巨大的潜力。为此,开发了一个完全耦合的物理模型,该模型在感应电荷电渗(ICEO)滑移和界面麦克斯韦应力的协同作用下结合了流固耦合。一个自由悬挂的,没有浮力的Janus圆柱体,其主体由聚苯乙烯制成,而粒子表面的一半覆盖着厚度可忽略不计的薄导电膜,在施加AC信号时会发生积极反应。在低频范围内,由于ICEO滑动中的对称断裂而导致感应电荷电泳(ICEP)转换,这使绝缘端向前移动。在更高的场频下,由于局部不均匀场对不均匀粒子偶极矩的作用,出现了一种称为“自我介电电泳(e-DEP)”的崭新的电动迁移现象。与低频ICEP平移形成鲜明对比的是,高频e-DEP力倾向于驱动不对称偶极矩朝导电端方向移动。 Janus微球在宽AC频率范围内的双向传输特征可以生动地解释为ME阵列,用于通过远距离对流从周围的液体介质沿其方向可控制的路径连续加载次级生物颗粒。这些结果为实现基于Janus ME阵列交流电动力学的灵活,高通量的纳米级生物成分的芯片上提取为后续的现场生物测定铺平了道路。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号