首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Temperature Sensor Assisted Lifetime Enhancement of Satellite Embedded Systems via Multi-Core Task Mapping and DVFS
【2h】

Temperature Sensor Assisted Lifetime Enhancement of Satellite Embedded Systems via Multi-Core Task Mapping and DVFS

机译:通过多核任务映射和DVFS温度传感器辅助延长了卫星嵌入式系统的使用寿命

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, thanks to the miniaturization and high performance of commercial-off-the-shelf (COTS) computer systems, small satellites get popular. However, due to the very expensive launching cost, it is critical to reduce the physical size and weight of the satellite systems such as cube satellites (CubeSats), making it infeasible to install high capacity batteries or solar panels. Thus, the low-power design is one of the most critical issues in the design of such systems. In addition, as satellites make a periodic revolution around the Earth in a vacuum, their operating temperature varies greatly. For instance, in a low earth orbit (LEO) CubeSats, the temperatures vary from 30 to −30 degrees Celsius, resulting in a big thermal cycle (TC) in the electronic parts that is known to be one of the most critical reliability threats. Moreover, such LEO CubeSats are not fully protected by active thermal control and thermal insulation due to the cost, volume, and weight problems. In this paper, we propose to utilize temperature sensors to maximize the lifetime reliability of the LEO satellite systems via multi-core mapping and dynamic voltage and frequency scaling (DVFS) under power constraint. As conventional reliability enhancement techniques primarily focus on reducing the temperature, it may cause enlarged TCs, making them even less reliable. On the contrary, we try to maintain the TC optimal in terms of reliability with respect to the given power constraint. Experimental evaluation shows that the proposed technique improves the expected lifetime of the satellite embedded systems by up to 8.03 times in the simulation of Nvidia’s Jetson TK1.
机译:最近,由于现成的商用(COTS)计算机系统的小型化和高性能,小型卫星变得越来越流行。但是,由于发射成本非常昂贵,因此减小诸如立方卫星(CubeSats)之类的卫星系统的物理尺寸和重量至关重要,这使得无法安装大容量电池或太阳能电池板。因此,低功耗设计是此类系统设计中最关键的问题之一。另外,由于卫星在真空中绕地球周期性旋转,因此它们的工作温度变化很大。例如,在低地球轨道(LEO)立方体卫星中,温度从30摄氏度到-30摄氏度不等,导致电子零件中的大热循环(TC),这被认为是最关键的可靠性威胁之一。此外,由于成本,体积和重量问题,此类LEO CubeSat不能通过主动热控制和绝热得到充分保护。在本文中,我们建议利用温度传感器通过多核映射以及功率约束下的动态电压和频率缩放(DVFS)来最大化LEO卫星系统的寿命可靠性。由于传统的可靠性增强技术主要专注于降低温度,因此可能会导致TC增大,从而使其可靠性更低。相反,就给定的功率约束而言,我们尝试在可靠性方面保持TC最优。实验评估表明,在Nvidia的Jetson TK1仿真中,所提出的技术将卫星嵌入式系统的预期寿命提高了8.03倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号