首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry
【2h】

Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry

机译:糖酵解反应的热力学和动力学。第一部分:基于不可逆热力学和量热量验证的动力学建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In systems biology, material balances, kinetic models, and thermodynamic boundary conditions are increasingly used for metabolic network analysis. It is remarkable that the reversibility of enzyme-catalyzed reactions and the influence of cytosolic conditions are often neglected in kinetic models. In fact, enzyme-catalyzed reactions in numerous metabolic pathways such as in glycolysis are often reversible, i.e., they only proceed until an equilibrium state is reached and not until the substrate is completely consumed. Here, we propose the use of irreversible thermodynamics to describe the kinetic approximation to the equilibrium state in a consistent way with very few adjustable parameters. Using a flux-force approach allowed describing the influence of cytosolic conditions on the kinetics by only one single parameter. The approach was applied to reaction steps 2 and 9 of glycolysis (i.e., the phosphoglucose isomerase reaction from glucose 6-phosphate to fructose 6-phosphate and the enolase-catalyzed reaction from 2-phosphoglycerate to phosphoenolpyruvate and water). The temperature dependence of the kinetic parameter fulfills the Arrhenius relation and the derived activation energies are plausible. All the data obtained in this work were measured efficiently and accurately by means of isothermal titration calorimetry (ITC). The combination of calorimetric monitoring with simple flux-force relations has the potential for adequate consideration of cytosolic conditions in a simple manner.
机译:在系统生物学,材料余额,动力学模型和热力学边界条件下越来越多地用于代谢网络分析。显着的是,在动力学模型中,酶催化反应的可逆性和细胞溶质条件的影响通常忽略。实际上,在许多代谢途径中的酶催化反应通常是可逆的,即,它们仅进行直到达到平衡状态而不是直到基板完全消耗。在这里,我们提出使用不可逆的热力学,以具有非常少的可调节参数的一致方式描述对平衡状态的动力学近似。使用允许的助焊剂方法仅通过一个单个参数描述胞质条件对动力学对动力学的影响。将该方法施用于糖醇分解的反应步骤2和9(即,从葡萄糖6-磷酸葡萄糖6-磷酸酯6-磷酸酯的反应,与磷酸糖醇和磷酸氢丙烯酸盐和水的烯醇酶催化反应)。动力学参数的温度依赖性实现了Arrhenius关系,并且衍生的激活能量是合理的。通过等温滴定量热法(ITC)有效,准确地测量在该工作中获得的所有数据。随着简单的助熔力关系的热量监测的组合具有以简单的方式对细胞溶质条件进行充分考虑的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号