首页> 美国卫生研究院文献>Materials >Multiple Pseudo-Plastic Appearance of the Dynamic Fracture in Quasi-Brittle Materials
【2h】

Multiple Pseudo-Plastic Appearance of the Dynamic Fracture in Quasi-Brittle Materials

机译:多种伪塑性外观拟脆性材料的动态骨折

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding and simulating the dynamic response of quasi-brittle materials still remains as one of the most challenging issues in structural engineering. This paper presents the damage propagation material model (DAMP) developed in order to obtain reliable results for use in structural engineering practice. A brief overview focuses on the differences between fracture mechanics studies, and engineering material modelling is presented to highlight possible guideline improvements. An experimental dynamic test performed on ultra-high-performance concrete specimens was used to obtain evidence of the physical behaviour of brittle materials with respect to specimen size variations and, consequently, to verify the reliability of the material equations proposed. Two widely used material models (RHT and M72R3), as representatives of the classical brittle material models for structural purposes, and the proposed material model are compared. Here, we show how: (i) the multiple structural strength of brittle materials arises from the damage propagation process, (ii) there is no contradiction between fracture mechanics and the engineering approach once the velocity of damage propagation is chosen as fundamental material property and (iii) classical dynamic material models are intrinsically not objective with related loss of predictive capability. Finally, the original material model equation and the experimental strategy, dedicated to its extended verification, will be shown in order to increase the design predictiveness in the dynamic range considering structure and specimen size variations. The dynamic stress increasing factor (DIF), experimentally observed and widely recognised in literature as a fundamental concept for quasi-brittle material modelling, has been reviewed and decomposed in its geometrical and material dependencies. The new material model defines its DIF starting from the physical quantities of the damage propagation velocity applied to the test case boundary conditions. The resultant material model predictiveness results improved greatly, demonstrating its ability to model several dynamic events considering size and dynamic load variations with a unique material property set without showing contradictions between numerical and experimental approaches.
机译:理解和模拟准脆性材料的动态响应仍然是结构工程中最具挑战性问题之一。本文介绍了开发的损伤传播材料模型(潮湿),以获得结构工程实践的可靠效果。简要概述侧重于骨折力学研究的差异,并提出了工程材料建模,以突出可能的指导性改进。在超高性能混凝土样本上进行的实验动态试验用于获得脆性材料的物理行为关于标本尺寸变化的证据,并因此验证所提出的材料方程的可靠性。两种广泛使用的材料模型(RHT和M72R3),作为结构目的的经典脆性材料模型的代表,以及所提出的材料模型。在这里,我们展示了如何:(i)脆性材料的多种结构强度由损伤传播过程产生,(ii)一旦损坏传播的速度被选为基本材料,骨折力学和工程方法之间没有矛盾(iii)经典动态材料模型本质上与相关的预测能力丢失无客观。最后,将显示最初的材料模型方程和专用于其扩展验证的实验策略,以便在考虑结构和样本尺寸变化的动态范围内的设计预测性。在文献中,在文献中,在文献中作为准脆性材料建模的基本概念进行了实验观察和广泛认识的动态应力增加因子(DIF),并分解在其几何和材料依赖性中。新材料模型从施加到测试壳边界条件的损伤传播速度的物理量开始定义其不同。所得到的材料模型预测性导致大大提高,展示了考虑尺寸和动态负载变化的若干动态事件的能力,其具有独特的材料集合,而不显示数值和实验方法之间的矛盾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号