首页> 美国卫生研究院文献>Micromachines >Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids
【2h】

Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids

机译:粘弹性液体分离的三维数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Particle focusing and separation using viscoelastic microfluidic technology have attracted lots of attention in many applications. In this paper, a three-dimensional lattice Boltzmann method (LBM) coupled with the immersed boundary method (IBM) is employed to study the focusing and separation of particles in viscoelastic fluid. In this method, the viscoelastic fluid is simulated by the LBM with two sets of distribution functions and the fluid–particle interaction is calculated by the IBM. The performance of particle focusing under different microchannel aspect ratios (AR) is explored and the focusing equilibrium positions of the particles with various elasticity numbers and particle diameters are compared to illustrate the mechanism of particle focusing and separation in viscoelastic fluids. The results indicate that, for particle focusing in the square channel (AR = 1), the centerline single focusing becomes a bistable focusing at the centerline and corners as El increases. In the rectangular channels (AR < 1), particles with different diameters have different equilibrium positions. The equilibrium position of large particles is closer to the wall, and large particles have a faster lateral migration speed and few large particles migrate towards the channel center. Compared with the square channel, the rectangular channel is a better design for particle separation.
机译:使用粘弹性微流体技术的粒子聚焦和分离在许多应用中引起了很多关注。在本文中,采用与浸没边界法(IBM)耦合的三维晶格Boltzmann方法(LBM)来研究粘弹性液中颗粒的聚焦和分离。在该方法中,粘弹性流体由具有两组分布函数的LBM模拟,并且通过IBM计算流体颗粒相互作用。探讨了不同微通道纵横比(AR)下的粒子聚焦的性能,并且比较了具有各种弹性数和粒径的颗粒的聚焦平衡位置,以说明粒子聚焦和在粘弹性流体中分离的机理。结果表明,对于聚焦在方沟道(AR = 1)中的粒子,中心线单一聚焦成为中心线和拐角处的双稳态聚焦,因为EL增加。在矩形通道(AR <1)中,具有不同直径的颗粒具有不同的平衡位置。大颗粒的平衡位置更靠近壁,并且大颗粒具有更快的横向迁移速度,并且很少有大颗粒朝向通道中心迁移。与方形通道相比,矩形通道是颗粒分离的更好设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号