首页> 美国卫生研究院文献>Micromachines >Multiphysics Simulator for the IPMC Actuator: Mathematical Model Finite Difference Scheme Fast Numerical Algorithm and Verification
【2h】

Multiphysics Simulator for the IPMC Actuator: Mathematical Model Finite Difference Scheme Fast Numerical Algorithm and Verification

机译:用于IPMC执行器的多体模拟器:数学模型有限差分方案快速数值算法和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The article is devoted to the development and creation of a multiphysics simulator that can, on the one hand, simulate the most significant physical processes in the IPMC actuator, and on the other hand, unlike commercial products such as COMSOL, can use computing resources economically. The developed mathematical model is an adjoint differential equation describing the transport of charged particles and water molecules in the ion-exchange membrane, the electrostatic field inside, and the mechanical deformation of the actuator. The distribution of the electrostatic potential in the interelectrode space is located by means of the solution of the Poisson equation with the Dirichlet boundary conditions, where the charge density is a function of the concentration of cations inside the membrane. The cation distribution was obtained by means of the solution of the equation system, in which the fluxes of ions and water molecules are described by the modified Nernst-Planck equations with boundary conditions of the third kind (the Robin problem). The cantilever beam forced oscillation equation in the presence of resistance (allowing for dissipative processes) with assumptions of elasticity theory was used to describe the actuator motion. A combination of the following computational methods was used as a numerical algorithm for the solution: the Poisson equation was solved by a direct method, the modified Nernst-Planck equations were solved by the Newton-Raphson method, and the mechanical oscillation equation was solved using an explicit scheme. For this model, a difference scheme has been created and an algorithm has been described, which can be implemented in any programming language and allows for fast computational experiments. On the basis of the created algorithm and with the help of the obtained experimental data, a program has been created and the verification of the difference scheme and the algorithm has been performed. Model parameters have been determined, and recommendations on the ranges of applicability of the algorithm and the program have been given.
机译:本文致力于开发和创建多职员模拟器,可以一方面模拟IPMC执行器中最重要的物理过程,另一方面,与COMSOL等商业产品不同,可以在经济上使用计算资源。开发的数学模型是描述在离子交换膜中的带电粒子和水分子的运输,静电场内和致动器的机械变形的伴随微分方程。互电极间空间中的静电电位分布通过与小侧芯边界条件的泊松方程的溶液定位,其中电荷密度是膜内阳离子浓度的函数。通过方程系统的溶液获得阳离子分布,其中离子和水分子的助熔剂由具有第三种(Robin问题)的边界条件的修改的NERNST-Planck方程。使用具有弹性理论假设的阻力(允许耗散过程)存在悬臂梁强制振动方程来描述致动器运动。使用以下计算方法的组合作为解决方案的数值算法:通过直接方法解决了泊松方程,通过牛顿 - 拉随方法解决了改进的内部普通方程,使用了机械振荡方程一个明确的方案。对于该模型,已经创建了差异方案并且已经描述了一种算法,其可以以任何编程语言实现,并且允许快速计算实验。在创建的算法和在所获得的实验数据的帮助的基础上,已经创建了一个程序并执行了差分方案的验证和算法。已经确定了模型参数,并提出了关于算法的适用范围和该程序的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号