首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Theoretical and Experimental Study of Heterodyne Phase-Sensitive Dispersion Spectroscopy with an Injection-Current-Modulated Quantum Cascade Laser
【2h】

Theoretical and Experimental Study of Heterodyne Phase-Sensitive Dispersion Spectroscopy with an Injection-Current-Modulated Quantum Cascade Laser

机译:外差相相敏分散光谱与注射电流调制量子级联激光的理论与实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report the theoretical and experimental study of calibration-free heterodyne phase-sensitive dispersion spectroscopy (HPSDS) in the mid-infrared using a direct current modulated mid-infrared quantum cascade laser (QCL). The modulation of QCL current at several hundred MHz or higher generates the synchronous frequency and intensity modulation of the QCL emission. An analytical model of the phase of the beat note signal in HPSDS is derived by considering the absorption and dispersion processes and incorporating the QCL modulation parameters. In the experiment, a 4.5 μm QCL modulated at 350 MHz was used to measure N2O at 200 Torr in a 10 cm gas cell. The N2O concentrations inferred from the analytical model were compared with the nominal values to show good agreement over the concentration range of 189−805 ppm with a standard deviation <3%. When the QCL wavelength was locked at the line-center of the molecular transition, it was of interest to find that the theoretical model was simplified to that used for near-infrared HPSDS with an electro-optical modulator for laser modulation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号