首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Combining Artificial Neural Network and Ordinary Kriging to Predict Wetland Soil Organic Carbon Concentration in China’s Liao River Basin
【2h】

Combining Artificial Neural Network and Ordinary Kriging to Predict Wetland Soil Organic Carbon Concentration in China’s Liao River Basin

机译:将人工神经网络与普通克里格相结合预测中国辽河流域湿地土壤有机碳浓度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate prediction of wetland soil organic carbon concentration and an understanding of its controlling factors are important for studying regional climate change and wetland carbon cycles; with that knowledge mechanisms can be put in place that are conducive to sustainable ecosystem management for environmental health. In this study, a hybrid approach combining an artificial neural network and ordinary kriging and 103 soil samples at three soil depth ranges (0–30, 30–60, and 60–100 cm) were used to predict wetland soil organic carbon concentration in China’s Liao River Basin. The model evaluation indicated that a combination of artificial neural network and ordinary kriging and limited soil samples achieved good performance in predicting wetland soil organic carbon concentration. Wetland soil organic carbon concentration in the Liao River Basin has apparent spatial and vertical heterogeneities with values decreasing from southeast to northwest and concentrates present mainly in the topsoil (0–30 cm). Mean wetland soil organic carbon concentration values at the three soil depths were 10.43 ± 0.38, 7.93 ± 0.25, and 7.61 ± 0.22 g/kg, respectively, which are smaller than those over other wetland regions in Northeast China. Terrain aspect contributed the most in predicting wetland soil organic carbon concentration at each of the three soil depths, followed by normalized difference vegetation index at 0–30 cm and mean annual precipitation at 30–60 and 60–100 cm. This study provides a framework method and baseline to quantify the soil organic carbon concentration dynamics in response to climatic and anthropogenic drivers.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号