首页> 美国卫生研究院文献>Biophysical Journal >Feedforward Control of Plant Nitrate Transporter NRT1.1 Biphasic Adaptive Activity
【2h】

Feedforward Control of Plant Nitrate Transporter NRT1.1 Biphasic Adaptive Activity

机译:植物硝酸盐转运蛋白NRT1.1双相适应活性的前馈控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1—a transporter cum sensor—provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.
机译:植物中的硝酸盐信号传导缺陷导致氮代谢的紊乱,并且对硝酸盐输送系统产生负面影响,其在可变土壤硝酸盐条件下在高亲和力模式之间切换。最近发现血浆膜硝酸突蛋白NRT1.1-A Transioner Cum传感器 - 在这种切换机构上提供了一种线索。然而,一般机制描述仍然仍然难以理解。这里,我们说明了在各种细胞外硝酸盐浓度下NRT1.1介导的硝酸硝酸盐信号传导的适应性反应和调节。结果表明,NRT1.1的同源二聚体结构及其二聚体开关在引发钙霉素-B样钙传感器CBL9感测的特异性细胞溶质钙波中起重要作用,该钙素-B样钙传感器CBL9,其在低硝酸盐浓度下使激酶CIPK23活化,但是,在高硝酸盐浓度下阻抗。高亲和力单元的硝酸盐结合引发NRT1.1二聚体去耦和Chr101位点的灌注,用于通过CIPK23磷酸化。该磷酸化稳定NRT1.1单体状态,作用作高亲和力硝酸盐转化剂。然而,两种单体中的硝酸盐结合,通过二聚化保持未改性的NRT1.1状态,衰减CIPK23活性,从而保持硝酸盐信号传导和运输的低亲和力模式。这种NRT1.1活性的这种磷酸化LED调节显示由不相干的前馈回路控制的双稳态行为,其整合了硝酸盐诱导的阳性和阴性调节作用对CIPK23。因此,这些结果推进了我们对波动营养可用性的适应性的分子理解,并且是提高植物氮利用效率的前进方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号