首页> 美国卫生研究院文献>ACS Omega >Thermal Transport Engineering in Graphdiyne and GraphdiyneNanoribbons
【2h】

Thermal Transport Engineering in Graphdiyne and GraphdiyneNanoribbons

机译:Graphdiyne和Graphdiyne的热力运输工程纳米带

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the details of thermal transport in graphdiyne and its nanostructures would help to broaden their applications. On the basis of the molecular dynamics simulations and spectrally decomposed heat current analysis, we show that the high-frequency phonons in graphdiyne can be strongly hindered in nanoribbons because of the boundary scattering. The isotropic transport in graphdiyne can be switched to anisotropic along the armchair and zigzag directions. Adding side chains onto the nanoribbon edges further reduces the thermal conductivity (TC) along both armchair and zigzag directions thanks to the reduction of heat current carried by low-frequency modes, a mechanism that arises from the phonon resonances. The uniaxial tensile strain plays a different role in the TC of graphdiyne, armchair nanoribbons, and zigzag nanoribbons. Tensile strain causes the thermal conductivities of graphdiyne, and armchair nanoribbons increase first and then get reduced, whereas for zigzag nanoribbons, the TC decreases with strain first and reaches to a plateau. The different low-frequency phononresponse on strain is the main reason for the different TC behavior.For graphdiyne and armchair nanoribbons, the low-frequency heat currentis enhanced gradually first and then get reduced with the increaseof strain, while that of zigzag nanoribbons decreases with strainand then increases slightly. The current studies could help us understandthe phonon transport in graphdiyne and its nanoribbons, which is usefulfor their TC engineering.
机译:了解石墨二炔及其纳米结构中热传递的细节将有助于拓宽其应用。在分子动力学模拟和光谱分解热流分析的基础上,我们表明,由于边界散射,石墨二炔中的高频声子在纳米带中会受到强烈阻碍。石墨二炔的各向同性传输可以沿扶手椅和锯齿形方向切换为各向异性。将侧链添加到纳米带边缘上,这归因于低频模式所携带的热电流的减少,这进一步降低了扶手椅和锯齿形方向的热导率(TC),这是由声子共振引起的。单轴拉伸应变在石墨二炔,扶手椅纳米带和之字形纳米带的TC中起不同的作用。拉伸应变会引起石墨二炔的热导率,扶手椅纳米带先增加然后降低,而之字形纳米带的TC随应变先降低并达到平稳。低频声子的不同应变响应是TC行为不同的主要原因。对于石墨二炔和扶手椅纳米带,低频热电流先逐渐增强,然后随着增加而减小形,而之字形纳米带则随着应变而降低然后略有增加。当前的研究可以帮助我们了解石墨二炔及其纳米带中的声子传输他们的TC工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号