class='head no_bottom_margin' id='sec1title'>Int'/> Photocurrent Polarity Controlled by Light Wavelength in Self-Powered ZnO Nanowires/SnS Photodetector System
首页> 美国卫生研究院文献>iScience >Photocurrent Polarity Controlled by Light Wavelength in Self-Powered ZnO Nanowires/SnS Photodetector System
【2h】

Photocurrent Polarity Controlled by Light Wavelength in Self-Powered ZnO Nanowires/SnS Photodetector System

机译:自供电ZnO纳米线/ SnS光电探测器系统中受光波长控制的光电流极性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionSelf-powered photodetectors have received considerable attention owing to their improved adaptability and mobility in long-term detecting, communicating, responding, and imaging applications (, , , , , ). Normally, the design of self-powered photodetectors is based on either an integrated energy harvesting unit or an internal built-in electric field, which is necessary for separating the photo-generated charge pairs (electrons and holes) and thus forming photocurrent (, , , , , ). During the optoelectronic process, the direction of the photo-generated electric field is opposite to that of the built-in electric field, which can weaken the separation of charge carriers (, ). Up to now, the p-n junction and Schottky barrier have been widely utilized to enhance built-in electric fields (, href="#bib25" rid="bib25" class=" bibr popnode">Wu et al., 2016, href="#bib17" rid="bib17" class=" bibr popnode">Peng et al., 2017, href="#bib29" rid="bib29" class=" bibr popnode">Yu et al., 2017, href="#bib30" rid="bib30" class=" bibr popnode">Zhang et al., 2012, href="#bib26" rid="bib26" class=" bibr popnode">Xiang et al., 2015, href="#bib24" rid="bib24" class=" bibr popnode">Wu and Wang, 2016). However, the built-in potentials in these studies are always insufficient to control the transfer direction of charge pairs, limiting the resolution of dynamic light imaging and detection. Therefore, it is necessary and essential to select apposite optical/electrical materials and promote the configuration design of self-powered photodetectors to realize optimal optoelectronic process.As is well known, ZnO in wurtzite lattice is a direct band-gap nonferroelectrics lacking a center of symmetry with high total pyroelectric coefficient (−9.4 μC⋅m−2⋅K−1) (href="#bib5" rid="bib5" class=" bibr popnode">Heiland and Ibach, 1966, href="#bib9" rid="bib9" class=" bibr popnode">Lang, 2005, href="#bib14" rid="bib14" class=" bibr popnode">Norton et al., 2004); SnS is an indirect band-gap semiconductor with predicted high Seebeck coefficient (400 μV⋅K−1) and low thermal conductivity (17 mW⋅cm−1⋅K−1) (href="#bib20" rid="bib20" class=" bibr popnode">Tan et al., 2014, href="#bib18" rid="bib18" class=" bibr popnode">Spitzer, 1970, href="#bib27" rid="bib27" class=" bibr popnode">Xu et al., 2009). Rapid change of temperature can be naturally induced by light illuminations, leading to independent built-in potentials within the above-mentioned anisotropic semiconductors. Our thought is to combine the pyroelectric characteristic of ZnO nanowire (NW) and thermoelectric characteristic of SnS together to modulate the optoelectronic process and thus realize polarity control of the charge transfer by utilizing the heat effect of light illumination.In the design, there are two opposite built-in electric fields in self-powered ZnO NWs/SnS photodetector: the pyroelectric-polarization potential (pyro-potential) inside ZnO, which promotes the optoelectronic process, and the thermo-potential inside SnS, which suppresses the optoelectronic process. As expected, a photocurrent enhancement of 125% and improved responsivity of 364 μA/W are obtained under visible (VIS) illumination (690 nm), whereas a reverse responsivity of −155 μA/W is obtained under UV illumination (365 nm) for the special ZnO NWs/SnS photodetector at zero bias. Furthermore, a 6 × 6 photodetector array with 36 pixels is constructed to indicate the good resolution of switchable light imaging. In comparison with conventional photodetectors, the unique light wavelength-induced photocurrent polarity in the self-powered ZnO NWs/SnS photodetector shows prospect in the fields of wide-range light imaging, binary switches, as well as optoelectronic integrated circuits.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介自供电的光电探测器由于其在长期使用中的适应性和移动性提高而受到了相当大的关注。术语检测,通信,响应和成像应用程序(,,,,,)。通常,自供电光电探测器的设计基于集成的能量采集单元或内部内置电场,这对于分离光生电荷对(电子和空穴)并形成光电流(, ,,,)。在光电过程中,光生电场的方向与内置电场的方向相反,这会削弱电荷载流子(,)的分离。到目前为止,pn结和肖特基势垒已被广泛用于增强内置电场(,href="#bib25" rid="bib25" class=" bibr popnode"> Wu et al。,2016 < / a>,href="#bib17" rid="bib17" class=" bibr popnode">彭等人,2017 ,href =“#bib29” rid =“ bib29” class = “ bibr popnode”> Yu等人,2017 ,href="#bib30" rid="bib30" class=" bibr popnode"> Zhang等人,2012 ,href =“#bib26” rid =“ bib26” class =“ bibr popnode”>西安等人,2015 ,href="#bib24" rid="bib24" class=" bibr popnode">吴和王,2016 )。但是,这些研究中的内置电势始终不足以控制电荷对的传输方向,从而限制了动态光成像和检测的分辨率。因此,选择合适的光电材料并促进自供电光探测器的配置设计以实现最佳光电工艺是必要和必要的。众所周知,纤锌矿晶格中的ZnO是一种直接带隙非铁电体,缺乏中心总热电系数(-9.4μC⋅m −2 ⋅K -1 )的对称性(href =“#bib5” rid =“ bib5” class =“ bibr popnode“> Heiland and Ibach,1966 ,href="#bib9" rid="bib9" class=" bibr popnode"> Lang,2005 ,href =”#bib14“ rid =“ bib14” class =“ bibr popnode”> Norton等,2004 ); SnS是一种间接带隙半导体,具有较高的塞贝克系数(400μV⋅K -1 )和低热导率(17mW⋅cm -1 ⋅K -1 )(href="#bib20" rid="bib20" class=" bibr popnode"> Tan等人,2014 ,href =“#bib18” rid = “ bib18” class =“ bibr popnode”> Spitzer,1970 ,href="#bib27" rid="bib27" class=" bibr popnode"> Xu等,2009 )。温度的快速变化可以自然地由光照引起,从而在上述各向异性半导体中产生独立的内置电势。我们的想法是将ZnO纳米线(NW)的热电特性和SnS的热电特性结合在一起来调制光电过程,从而利用光照射的热效应实现电荷转移的极性控制。在设计中,有两个自供电的ZnO NWs / SnS光电探测器中与内置电场相反的是:ZnO内部的热电极化势(热电势)促进了光电过程,而SnS内部的热势抑制了光电过程。如预期的那样,在可见(VIS)照明(690nm)下获得了125%的光电流增强和364μA/ W的改善的响应度,而在UV照明(365nm)下,在可见光(365nm)下获得了-155μA/ W的反向响应度零偏压下的特殊ZnO NWs / SnS光电探测器。此外,构建了一个具有36个像素的6×6光电探测器阵列,以指示可切换光成像的良好分辨率。与常规光电探测器相比,自供电的ZnO NWs / SnS光电探测器中独特的光波长感应光电流极性在宽范围光成像,二进制开关以及光电集成电路领域显示出前景。

著录项

  • 期刊名称 iScience
  • 作者单位
  • 年(卷),期 2018(1),-1
  • 年度 2018
  • 页码 16–23
  • 总页数 23
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号