首页> 美国卫生研究院文献>The ISME Journal >Microbial catabolic activities are naturally selected by metabolic energy harvest rate
【2h】

Microbial catabolic activities are naturally selected by metabolic energy harvest rate

机译:微生物分解代谢活动是通过代谢能的收获率自然选择的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.
机译:作为微生物建立的合作或竞争的主要特征,已经在很大程度上讨论了产量与单位基质能量收集速率之间的基本权衡。在这项研究中,通过开发一种通用模型来解决这一问题,该模型可以模拟仅基于众所周知的生化途径定义的现有和未经实验报道的微生物分解代谢活动之间的竞争。没有考虑特定的微生物生理适应性,计算了分解代谢能与生长量的耦合,并且假定所有微生物组的共同最大生物量特异性分解代谢速率(表示为电子传递速率)。在这种方法下,在最大能量收集速率的假设下,成功的微生物代谢与实验观察相符。模拟了通常在废水处理厂中发现的两个微生物生态系统,即:(i)葡萄糖的厌氧发酵和(ii)在好氧自养(硝化)和缺氧异养与自养(反硝化)条件下氮的氧化和还原。在葡萄糖发酵中,通过多种中间发酵途径,最终观察到甲烷和二氧化碳的实验观察到的交叉进料被预测。类似地,预测两阶段硝化(通过铵和亚硝酸盐氧化剂)在一个阶段比硝化更为盛行。相反,反硝化预计在一个阶段(通过反硝化器)以及厌氧氨氧化(厌氧铵氧化)进行。模型结果表明,这些观察结果是在路径的不同步骤转移的每个电子的不同能量产量的直接结果。总体而言,我们的结果从理论上支持以下假设:成功的微生物分解代谢活动是通过总体最大能量收集速率来选择的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号