class='head no_bottom_margin' id='sec1title'>Int'/> Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem
【2h】

Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem

机译:通过局部机械控制拟南芥芽顶分生组织中的细胞分裂的全球拓扑秩序出现。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPattern formation in complex multicellular organs is driven by a combination of control of the cell cycle and the placement of cells within organs (). Local interactions between cells are proposed to underlie the emergence of complex ordered structures through the iterative repetition of simple rules (). Such bottom-up self-organizing principles have been described in a wide variety of biological systems at the cellular level ().Organogenesis in plants is no exception and is thought to be mediated by communication through cell-to-cell interactions (, ). Unlike in animal systems, where cells are capable of migrating across organs, plant cells physically adhere to one another through shared cell walls such that their positions relative to one another do not change (). In light of these spatial constraints, the orientation of cell division planes plays an integral role in pattern formation (, , ).Models that predict the placement of cell division planes have been proposed previously in both plant and animal systems (, , ). These cell division rules rely upon heterogeneity in cell shape in order to break symmetry in cell division plane choice. A rule proposed by Errera in 1886 states that a plant cell will divide in half through its center using the shortest wall possible (). Adding a stochastic element () or integrating multiple geometric factors simultaneously () to the placement of the division plane further increases the accuracy with which the placement of the division plane can be predicted. These local geometric principles are capable of predicting many, but not all, symmetric cell divisions in plants (href="#bib37" rid="bib37" class=" bibr popnode">Kwiatkowska, 2004).Mechanical forces between adjacent plant cells exert influence over their neighbors (href="#bib27" rid="bib27" class=" bibr popnode">Hamant et al., 2008), and these interactions can alter the orientation of cell division planes (href="#bib42" rid="bib42" class=" bibr popnode">Louveaux et al., 2016, href="#bib41" rid="bib41" class=" bibr popnode">Lintilhac and Vesecky, 1984). Further work examining the organization of animal and plant epidermis has shown that the topology of a neighboring cell can influence division plane placement (href="#bib26" rid="bib26" class=" bibr popnode">Gibson et al., 2011). A limited number of local cell interactions can therefore impact cell division plane placement.The regulatory mechanisms underlying the cell cycle in plants has been the subject of intensive investigation (href="#bib30" rid="bib30" class=" bibr popnode">Inzé and De Veylder, 2006, href="#bib15" rid="bib15" class=" bibr popnode">Dewitte and Murray, 2003, href="#bib55" rid="bib55" class=" bibr popnode">Sablowski, 2016). In unicellular systems, models can use both cell size (sizer) and length of time since their last cell division (adder) to predict when cells will undergo mitosis (href="#bib70" rid="bib70" class=" bibr popnode">Turner et al., 2012, href="#bib54" rid="bib54" class=" bibr popnode">Robert et al., 2014, href="#bib73" rid="bib73" class=" bibr popnode">Wallden et al., 2016). The exploration of the sizer versus adder principles underlying the control of cell division in a complex plant organ suggests that each partially contribute toward the control of cell size (href="#bib74" rid="bib74" class=" bibr popnode">Willis et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Jones et al., 2017).Studies examining the control of the cell cycle have largely focused on individual cells. Likewise, the prediction of cell division planes has been based on local cell geometry (href="#bib6" rid="bib6" class=" bibr popnode">Besson and Dumais, 2011) or the local neighbourhood of cells in 2D epithelia (href="#bib26" rid="bib26" class=" bibr popnode">Gibson et al., 2011, href="#bib25" rid="bib25" class=" bibr popnode">Gibson and Gibson, 2009). Previous work has also explored the impact of complex tissue shape and differential growth on cell division (href="#bib42" rid="bib42" class=" bibr popnode">Louveaux et al., 2016), yet the effectiveness and consequences of these rules in the global 3D context of cellular organization are not yet understood.In plants, the shoot apical meristem (SAM) contains the stem cell niche from which all above ground organs are formed. Control of the cell cycle and orientation of cell divisions in the SAM therefore plays a key role in the generation of cellular patterns that comprise future organs and form the template upon which molecular events take place (href="#bib6" rid="bib6" class=" bibr popnode">Besson and Dumais, 2011, href="#bib64" rid="bib64" class=" bibr popnode">Shapiro et al., 2015). The SAM has also provided a useful experimental system to explore cell cycle control (href="#bib74" rid="bib74" class=" bibr popnode">Willis et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Jones et al., 2017) and regulation of cell division (href="#bib64" rid="bib64" class=" bibr popnode">Shapiro et al., 2015, href="#bib6" rid="bib6" class=" bibr popnode">Besson and Dumais, 2011, href="#bib42" rid="bib42" class=" bibr popnode">Louveaux et al., 2016, href="#bib61" rid="bib61" class=" bibr popnode">Schaefer et al., 2017).In this study, we investigate the dynamic organizational properties of the Arabidopsis SAM using 3D imaging and network science in order to uncover the emergent global properties induced in these systems. We show that the emergence of global order within the multicellular consortia emerges from local cell division rules that are rooted in the mechanical interactions between cells.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介复杂多细胞器官中的模式形成是由控制细胞周期和细胞在器官内的位置()。提出了单元格之间的局部交互作用,以通过简单规则的迭代重复来复杂的有序结构的出现。这种自下而上的自组织原理已在细胞水平的多种生物系统中得到了描述。植物中的组织发生也不例外,并且被认为是通过细胞间相互作用来介导的。与动物系统中的细胞能够跨器官迁移不同,在动物系统中,植物细胞通过共享的细胞壁彼此物理粘附,因此它们相对于彼此的位置不会改变()。鉴于这些空间限制,细胞分裂平面的方向在模式形成中起着不可或缺的作用。先前已经在动植物系统中提出了预测细胞分裂平面位置的模型。这些细胞分裂规则依赖于细胞形状的异质性,以打破细胞分裂平面选择的对称性。埃雷拉(Errera)在1886年提出的一条规则规定,植物细胞将使用可能的最短壁在中心分裂成两半。向分割平面的位置添加随机元素()或同时整合多个几何因子()进一步提高了预测分割平面的位置的准确性。这些局部几何原理能够预测植物中许多但不是全部的对称细胞分裂(href="#bib37" rid="bib37" class=" bibr popnode"> Kwiatkowska,2004 )。相邻植物细胞之间的作用力对其邻居产生影响(href="#bib27" rid="bib27" class=" bibr popnode"> Hamant et al。,2008 ),这些相互作用可以改变方向细胞分裂平面的数量(href="#bib42" rid="bib42" class=" bibr popnode"> Louveaux et al。,2016 ,href =“#bib41” rid =“ bib41”类=“ bibr popnode”> Lintilhac和Vesecky,1984 )。进一步检查动植物表皮组织的工作表明,相邻细胞的拓扑结构可以影响分裂平面的位置(href="#bib26" rid="bib26" class=" bibr popnode"> Gibson等, 2011 )。因此,有限数量的局部细胞相互作用会影响细胞分裂平面的位置。植物细胞周期背后的调控机制一直是深入研究的主题(href =“#bib30” rid =“ bib30” class =“ bibr popnode “>Inzé和De Veylder,2006 ,href="#bib15" rid="bib15" class=" bibr popnode">德威特和穆雷,2003 ,href =”#bib55 “ rid =” bib55“ class =” bibr popnode“>萨布洛夫斯基,2016 )。在单细胞系统中,模型可以使用细胞大小(大小)和自上次细胞分裂(加法器)以来的时间长度来预测细胞何时发生有丝分裂(href =“#bib70” rid =“ bib70” class =“ bibr popnode“> Turner等人,2012 ,href="#bib54" rid="bib54" class=" bibr popnode"> Robert等人,2014 ,href =” #bib73“ rid =” bib73“ class =” bibr popnode“> Wallden等人,2016 )。对控制复杂植物器官中细胞分裂的基础的sizer与adder原理的探索表明,每种原理都部分地有助于细胞大小的控制(href =“#bib74” rid =“ bib74” class =“ bibr popnode” > Willis等,2016 ,href="#bib33" rid="bib33" class=" bibr popnode"> Jones等,2017 )。研究了控制细胞周期主要集中在单个细胞上。同样,细胞分裂平面的预测也基于局部细胞的几何形状(href="#bib6" rid="bib6" class=" bibr popnode"> Besson and Dumais,2011 )或局部邻域二维上皮细胞的数量(href="#bib26" rid="bib26" class=" bibr popnode"> Gibson et al。,2011 ,href =“#bib25” rid =“ bib25” class =“ bibr popnode”> Gibson和Gibson,2009 )。先前的工作还探讨了复杂的组织形状和不同的生长方式对细胞分裂的影响(href="#bib42" rid="bib42" class=" bibr popnode"> Louveaux et al。,2016 ),然而,尚不清楚这些规则在蜂窝组织的全球3D环境中的有效性和后果。,茎尖分生组织(SAM)包含干细胞位,可形成所有地上器官。因此,在SAM中控制细胞周期和细胞分裂的方向在构成未来器官的细胞模式的形成中起着关键作用,并形成发生分子事件的模板(href =“#bib6” rid =“ bib6“ class =” bibr popnode“> Besson and Dumais,2011 ,href="#bib64" rid="bib64" class=" bibr popnode"> Shapiro等人,2015 ) 。 SAM还提供了一个有用的实验系统来探索细胞周期控制(href="#bib74" rid="bib74" class=" bibr popnode"> Willis et al。,2016 ,href = “#bib33” rid =“ bib33” class =“ bibr popnode”> Jones等人,2017 )和细胞分裂调控(href =“#bib64” rid =“ bib64” class =“ bibr popnode“> Shapiro等人,2015 ,href="#bib6" rid="bib6" class=" bibr popnode">贝森和杜迈斯,2011 ,href =”# bib42“ rid =” bib42“ class =” bibr popnode“> Louveaux等人,2016 ,href="#bib61" rid="bib61" class=" bibr popnode"> Schaefer等人, 2017 )。在这项研究中,我们使用3D成像和网络科学研究了拟南芥SAM的动态组织特性,以揭示这些系统中诱发的新兴全局特性。我们显示多细胞财团内的全球秩序的出现是从根源于细胞之间的机械相互作用的局部细胞分裂规则中出现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号