首页> 美国卫生研究院文献>PLoS Clinical Trials >Effect of the Topology and Delayed Interactions in Neuronal Networks Synchronization
【2h】

Effect of the Topology and Delayed Interactions in Neuronal Networks Synchronization

机译:拓扑和延迟的交互作用在神经网络同步中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As important as the intrinsic properties of an individual nervous cell stands the network of neurons in which it is embedded and by virtue of which it acquires great part of its responsiveness and functionality. In this study we have explored how the topological properties and conduction delays of several classes of neural networks affect the capacity of their constituent cells to establish well-defined temporal relations among firing of their action potentials. This ability of a population of neurons to produce and maintain a millisecond-precise coordinated firing (either evoked by external stimuli or internally generated) is central to neural codes exploiting precise spike timing for the representation and communication of information. Our results, based on extensive simulations of conductance-based type of neurons in an oscillatory regime, indicate that only certain topologies of networks allow for a coordinated firing at a local and long-range scale simultaneously. Besides network architecture, axonal conduction delays are also observed to be another important factor in the generation of coherent spiking. We report that such communication latencies not only set the phase difference between the oscillatory activity of remote neural populations but determine whether the interconnected cells can set in any coherent firing at all. In this context, we have also investigated how the balance between the network synchronizing effects and the dispersive drift caused by inhomogeneities in natural firing frequencies across neurons is resolved. Finally, we show that the observed roles of conduction delays and frequency dispersion are not particular to canonical networks but experimentally measured anatomical networks such as the macaque cortical network can display the same type of behavior.
机译:与单个神经细胞的内在特性一样重要的是神经元网络,神经元网络嵌入其中,并因此而获得了很大一部分的响应能力和功能。在这项研究中,我们探索了几类神经网络的拓扑特性和传导延迟如何影响其组成细胞在动作电位激发之间建立明确定义的时间关系的能力。大量神经元产生和维持毫秒级精确触发(由外部刺激引起或由内部产生)的这种能力对于神经代码至关重要,这些神经代码利用精确的尖峰定时来表示和传递信息。我们的结果基于在振荡状态下基于电导的神经元类型的广泛模拟,表明只有某些网络拓扑允许同时在本地和远程范围内进行协调触发。除网络体系结构外,还观察到轴突传导延迟是产生相干尖峰的另一个重要因素。我们报告说,这种通信等待时间不仅设置远程神经种群的振荡活动之间的相位差,而且还确定互连的单元格是否可以设置在任何相干触发中。在这种情况下,我们还研究了如何解决网络同步效应与跨神经元的自然激发频率中的不均匀性引起的色散漂移之间的平衡。最后,我们表明,所观察到的传导延迟和频率色散的作用并不是典型网络所特有的,但是实验测量的解剖网络(例如猕猴皮层网络)可以显示相同类型的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号