首页> 美国卫生研究院文献>PLoS Clinical Trials >Smaller, Scale-Free Gene Networks Increase Quantitative Trait Heritability and Result in Faster Population Recovery
【2h】

Smaller, Scale-Free Gene Networks Increase Quantitative Trait Heritability and Result in Faster Population Recovery

机译:较小的无尺度基因网络提高了数量性状遗传力,并导致了更快的种群恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the goals of biology is to bridge levels of organization. Recent technological advances are enabling us to span from genetic sequence to traits, and then from traits to ecological dynamics. The quantitative genetics parameter heritability describes how quickly a trait can evolve, and in turn describes how quickly a population can recover from an environmental change. Here I propose that we can link the details of the genetic architecture of a quantitative trait—i.e., the number of underlying genes and their relationships in a network—to population recovery rates by way of heritability. I test this hypothesis using a set of agent-based models in which individuals possess one of two network topologies or a linear genotype-phenotype map, 16–256 genes underlying the trait, and a variety of mutation and recombination rates and degrees of environmental change. I find that the network architectures introduce extensive directional epistasis that systematically hides and reveals additive genetic variance and affects heritability: network size, topology, and recombination explain 81% of the variance in average heritability in a stable environment. Network size and topology, the width of the fitness function, pre-change additive variance, and certain interactions account for ∼75% of the variance in population recovery times after a sudden environmental change. These results suggest that not only the amount of additive variance, but importantly the number of loci across which it is distributed, is important in regulating the rate at which a trait can evolve and populations can recover. Taken in conjunction with previous research focused on differences in degree of network connectivity, these results provide a set of theoretical expectations and testable hypotheses for biologists working to span levels of organization from the genotype to the phenotype, and from the phenotype to the environment.
机译:生物学的目标之一是弥合组织层次。最近的技术进步使我们能够从遗传序列到性状,再从性状到生态动力学。定量遗传学参数的遗传力描述了性状可以进化的速度,进而描述了种群可以从环境变化中恢复的速度。我在这里提出,我们可以通过遗传力将数量性状的遗传结构细节(即基础基因的数量及其在网络中的关系)与种群恢复率联系起来。我使用一组基于代理的模型测试了这个假设,其中个体具有两种网络拓扑或线性基因型-表型图,具有该特征的16–256个基因以及各种突变和重组率以及环境变化程度中的一种。我发现网络体系结构引入了广泛的定向上位性,可系统地隐藏和揭示附加的遗传方差并影响遗传性:网络大小,拓扑和重组可解释稳定环境中平均遗传性方差的81%。网络规模和拓扑,适应度函数的宽度,变化前的加性方差以及某些相互作用占突然环境变化后种群恢复时间方差的〜75%。这些结果表明,不仅累加方差的数量,而且重要的是分布在其上的基因座数量对于调节性状可以进化和种群恢复的速率也很重要。与先前针对网络连接程度差异的研究相结合,这些结果为生物学家提供了一系列理论上的期望和可验证的假设,这些生物学家致力于从基因型到表型以及从表型到环境的整个组织水平。

著录项

  • 期刊名称 PLoS Clinical Trials
  • 作者

    Jacob W. Malcom;

  • 作者单位
  • 年(卷),期 2009(6),2
  • 年度 2009
  • 页码 e14645
  • 总页数 12
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号