首页> 美国卫生研究院文献>PLoS Clinical Trials >Emergent Functional Properties of Neuronal Networks with Controlled Topology
【2h】

Emergent Functional Properties of Neuronal Networks with Controlled Topology

机译:具有受控拓扑的神经网络的新兴功能特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity.
机译:神经网络中的解剖学连通性和动力学之间的相互作用在大脑的功能特性以及由神经疾病引起的相关连通性变化中起着关键作用。但是,对这种相互作用在活脑细胞和人口规模上的详细实验研究受到可及性的限制。另外,要用形态学,电生理学和计算方法来研究基本的操作原理,可以研究从大型体外神经元网络以强加的拓扑结构组织起来的活动。在这里,我们验证了一种新的生物打印方法的使用,该方法有效地在体外维持了海马培养的拓扑结构,并通过膜片钳和MEA电生理研究了这些网格受限网络的新兴功能特性。尽管物理连接的组织有所不同,但我们的生物模式网格网络保留了相对于随机网络而言的突触传递,短期可塑性和整体网络活动的关键特性。有趣的是,强加的网格拓扑结构增强了沿正交方向的功能连接,较短的连接链接以及响应于局部刺激而大大提高了尖峰概率。这些结果清楚地表明,在物理网络连接不断变化的情况下,如今可以在大型神经元网络上进行可靠的功能研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号