首页> 美国卫生研究院文献>PLoS Clinical Trials >Simulation of the flow field and the chemical reaction coupling of selective catalytic reduction (SCR) system using an orthogonal experiment
【2h】

Simulation of the flow field and the chemical reaction coupling of selective catalytic reduction (SCR) system using an orthogonal experiment

机译:正交实验模拟选择性催化还原(SCR)系统的流场和化学反应耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is difficult to simulate both the flow field and the chemical reaction using, respectively, the flow state and kinetics calculations and actually reflect the influence of the gas flow state on the chemical change in a selective catalytic reduction (SCR) system. In this study, the flow field and the chemical reaction were therefore coupled to simulate a full Cu-Zeolite SCR system and the boundary conditions of the simulation were set by a relevant diesel engine bench test which included the exhaust temperature, the mass flow, and the exhaust pressure. Then, the influence of the gas flow state on the NOx conversion efficiency was investigated. Specifically, an orthogonal experimental design was used to study the influence of the injection parameters (position, angle, and speed) on the NH3 distribution by establishing the NH3 uniformity coefficient γ at the SCR catalyst capture surface in the flow field simulation. Then, the velocity capture surface of the SCR catalyst front section was sliced into coupled data transfer interfaces to study the effects of exhaust temperature, ammonia to NOx ratio (ANR), and the NO2/NOx on the NOx conversion efficiency. This was used as guidelines to optimize the SCR system control strategy. The results showed that a 1150 mm injection position, a 45°injection angle, and a 23 m/s injection velocity provided the most uniform NH3 distribution on the SCR catalyst capture surface. For constant injection parameters, the NOx conversion efficiency was the highest when the exhaust temperature was 200°C—400°C, the ANR was 1.1, and NO2/NOx was 0.5.
机译:分别使用流态和动力学计算很难模拟流场和化学反应,并且很难在选择性催化还原(SCR)系统中实际反映出气体流态对化学变化的影响。因此,在这项研究中,流场和化学反应被耦合以模拟完整的Cu-Zeolite SCR系统,并且通过相关的柴油机台架试验设定了模拟的边界条件,该试验包括排气温度,质量流量和排气压力。然后,研究了气体流动状态对NOx转化效率的影响。具体而言,通过在流场模拟中建立SCR催化剂捕集表面的NH3均匀系数γ,使用正交实验设计研究注入参数(位置,角度和速度)对NH3分布的影响。然后,将SCR催化剂前部的速度捕获表面切成耦合的数据传输接口,以研究排气温度,氨氮NOx比(ANR)和NO2 / NOx对NOx转化效率的影响。这被用作优化SCR系统控制策略的准则。结果表明,在SCR催化剂捕获表面上,1150 mm的注入位置,45°的注入角和23 m / s的注入速度提供了最均匀的NH3分布。对于恒定的喷射参数,当排气温度为200°C至400°C,ANR为1.1,NO2 / NOx为0.5时,NOx转化效率最高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号