首页> 美国卫生研究院文献>Polymers >Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
【2h】

Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

机译:含氯化物环境中干湿循环条件下玄武岩纤维增强聚合物片材和环氧树脂基体的长期耐久性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH). The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM) and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet.
机译:玄武岩纤维增强聚合物(BFRP)复合材料正受到越来越多的关注,因为它们代表了低成本的绿色原材料。 FRP复合材料必须面对严酷的环境,例如沿海海洋环境或带盐除冰的寒冷地区的氯离子。经受上述环境的FRP的抵抗力对于BFRP复合材料的安全设计和应用至关重要。在本文中,研究了BFRP片材和环氧树脂基体在含有氯离子的干湿循环环境中的长期耐久性。将BFRP片材和环氧树脂基质的样品暴露于40°C的3.5%NaCl溶液中浸泡8小时,在25°C和60%相对湿度(RH)下干燥16小时的条件下。在第180、270和360周期的曝光结束时,将样品从曝光室中取出,并通过拉伸试验,扫描电子显微镜(SEM)和空隙体积分数分析降解情况。发现在第360次暴露循环后,BFRP片材的拉伸模量增加了3.4%,拉伸强度和极限应变分别降低了45%和65%。对于环氧树脂基体,在第360次暴露循环后,其抗张强度,拉伸模量和极限应变分别降低了27.8%,3.2%和64.8%。结果表明,BFRP片材的降解主要受玄武岩纤维与环氧树脂基体之间界面破坏的影响。另外,盐沉淀物加速了纤维-基体的界面剥离,环氧树脂基体的水解导致许多空隙,从而加速了BFRP片材的降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号