首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S 166.69°E) Antarctica: 2. Potential Energy Densities Lognormal Distributions and Seasonal Variations
【2h】

Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S 166.69°E) Antarctica: 2. Potential Energy Densities Lognormal Distributions and Seasonal Variations

机译:南极麦克默多(77.84°S166.69°E)2011年至2015年平流层重力波的激光雷达观测:2。势能密度对数正态分布和季节性变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Five years of Fe Boltzmann lidar's Rayleigh temperature data from 2011 to 2015 at McMurdo are used to characterize gravity wave potential energy mass density (E pm), potential energy volume density (E pv), vertical wave number spectra, and static stability N 2 in the stratosphere 30–50 km. E pm (E pv) profiles increase (decrease) with altitude, and the scale heights of E pv indicate stronger wave dissipation in winter than in summer. Altitude mean E¯pm and E¯pv obey lognormal distributions and possess narrowly clustered small values in summer but widely spread large values in winter. E¯pm and E¯pv vary significantly from observation to observation but exhibit repeated seasonal patterns with summer minima and winter maxima. The winter maxima in 2012 and 2015 are higher than in other years, indicating interannual variations. Altitude mean N2¯ varies by ~30–40% from the midwinter maxima to minima around October and exhibits a nearly bimodal distribution. Monthly mean vertical wave number power spectral density for vertical wavelengths of 5–20 km increases from summer to winter. Using Modern Era Retrospective Analysis for Research and Applications version 2 data, we find that large values of E¯pm during wintertime occur when McMurdo is well inside the polar vortex. Monthly mean E¯pm are anticorrelated with wind rotation angles but positively correlated with wind speeds at 3 and 30 km. Corresponding correlation coefficients are −0.62, +0.87, and +0.80, respectively. Results indicate that the summer‐winter asymmetry of E¯pm is mainly caused by critical level filtering that dissipates most gravity waves in summer. E¯pm variations in winter are mainly due to variations of gravity wave generation in the troposphere and stratosphere and Doppler shifting by the mean stratospheric winds.
机译:Fe M.Boltzmann激光雷达在McMurdo的2011年至2015年的瑞利温度数据的五年时间用于表征重力波势能质量密度(E pm),势能体积密度(E pv),垂直波数谱和静态稳定性N 2 。 E pm(E pv)剖面随高度增加(减小),E pv的标度高度表明冬季的波耗散强于夏季。海拔平均值 <移动器重音=“ true” > E ¯ pm E ¯ pv 服从对数正态分布,并且具有窄聚类夏天的价值很小,而冬天的价值很大。 < mi> E pm E < / mi> ¯ pv 随观察而变化,但表现出重复夏季最小值和冬季最大值的季节性模式。 2012年和2015年的冬季最大值高于其他年份,表明年际变化。海拔平均值 <移动器重音=“ true”> N 2 与十月左右的仲冬最大值至最小值,并呈现出几乎双峰分布。从夏季到冬季,垂直波长为5-20 km的月平均垂直波数功率谱密度会增加。使用用于研究和应用程序版本2的现代时代追溯分析,我们发现 E ¯ pm 发生在McMurdo完全位于极地涡旋内部时。每月平均值 > E ¯ pm 与风的旋转角度,但与3和30 km处的风速成正相关。相应的相关系数分别为-0.62,+ 0.87和+0.80。结果表明 E ¯ pm 主要是由临界能级过滤引起的,该过滤能在夏季消散大部分重力波。 < mi> E ¯ pm 冬季的变化主要由于对流层和平流层中重力波产生的变化以及平均平流层风对多普勒频移的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号