首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Using stable isotopes to estimate travel times in a data‐sparse Arctic catchment: Challenges and possible solutions
【2h】

Using stable isotopes to estimate travel times in a data‐sparse Arctic catchment: Challenges and possible solutions

机译:使用稳定同位素估算稀疏北极流域的航行时间:挑战和可能的解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into run‐off has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, catchments underlain by permafrost have received little attention in isotope‐based studies, despite their global importance in terms of rapid environmental change. These high‐latitude regions offer limited access for data collection during critical periods (e.g., early phases of snowmelt). Additionally, spatio‐temporal variable freeze–thaw cycles, together with the development of an active layer, have a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. We describe an isotope‐based study undertaken to provide a preliminary assessment of travel times at Siksik Creek in the western Canadian Arctic. We adopted a model–data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using samples collected in the spring/summer, we characterize the isotopic composition of summer rainfall, melt from snow, soil water, and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were monitored. First approximations of transit times were estimated for soil and streamwater compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs revealed that transit time was best estimated using all available inflows (i.e., snowmelt, soil ice thaw, and rainfall). Early spring transit times were short, dominated by snowmelt and soil ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer resulted in more damped steam water variation and longer mean travel times (~1.5 years). The study has also highlighted key data needs to better constrain travel time estimates in permafrost catchments.
机译:利用同位素来量化降水向径流转化的时间动态,已揭示了对流域径流路径和影响生物地球化学迁移的混合过程的新见解。但是,尽管在快速的环境变化方面具有全球重要性,但基于多年冻土的集水区在基于同位素的研究中很少受到关注。这些高纬度地区在关键时期(例如融雪的早期阶段)提供了有限的数据收集通道。此外,时空变化的冻融循环以及活动层的形成,对流域水文学有时变的影响。所有这些特征使得传统的渡越时间估计方法的应用具有挑战性。我们描述了一项基于同位素的研究,旨在提供对加拿大西部北极地区锡克西克溪的旅行时间的初步评估。我们采用模型-数据融合方法来估算积雪和融水的体积和同位素特征。使用在春季/夏季收集的样本,我们可以表征夏季降雨,雪,土壤水和溪流水融化的同位素组成。此外,还监测了土壤水分动力学和活性层剖面的时间演变。使用集总卷积积分模型和随时间变化的输入(包括融雪,冰融化和夏季降雨)估算了土壤和溪流成分的运输时间的第一近似值。使用各种输入来比较运输时间估计值表明,使用所有可用流入量(即融雪,土壤冰融化和降雨)可以最好地估计运输时间。春季的早期运输时间很短,主要是融雪和土壤冰融化,而主要是冻结土壤时,集水区的储存有限。但是,夏季期间活跃层中与水的大量混合增加导致蒸汽水变化更加衰减,平均行程时间更长(〜1.5年)。该研究还强调了关键数据需要更好地限制多年冻土流域的旅行时间估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号