首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
【2h】

Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

机译:谐振ULF波的全局MHD建模:有或没有等离子层的模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon‐Fedder‐Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand‐alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher‐frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
机译:我们使用Lyon-Fedder-Mobarry(LFM)全球磁流体动力学(MHD)模型研究了等离子层对磁层超低频(ULF)波共振模式耦合的影响。我们展示了来自该模型的两个不同版本的结果,均由相同的太阳风条件驱动:一个版本包含等离子层(LFM与莱斯对流模型耦合,还包括加拉格尔等离子层模型),另一个不包含等离子层(独立的LFM)。我们发现,包含冷的稠密等离子体球对模拟的ULF波的性质具有重大影响。例如,由于波转向点位置的偏移,等离子层的包含导致压缩(方位角)电场波动的更深(更向地球方向)渗透。因此,压缩电场振荡将其能量共振耦合成局部环形模式场线共振的位置也向地球移动。在这两个模拟中,我们还发现,高频压缩(方位角)电场振荡比低频振荡更深入。另外,仿真中的压缩波模式结构与谐振波导的特性即径向驻波振荡模式一致。将等离子层合并到LFM全局MHD模型中,代表了有关使用此类模拟进行ULF波建模的最新技术进展。我们对辐射带建模技术的含义进行了简短的讨论,该技术使用全局MHD模拟的电场和磁场输出来驱动粒子动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号