首页> 外文期刊>Advanced energy materials >Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable and Printable Carbon Based Electrode-Interface Architecture
【24h】

Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable and Printable Carbon Based Electrode-Interface Architecture

机译:通过设计可扩展且可打印的碳基电极接口体系结构来解决钙钛矿太阳能电池中的关键不稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Thin-film solar cells based on hybrid organo-halide lead perovskites achieve over 22% power conversion efficiency (PCE). A photovoltaic technology at such high performance is no longer limited by efficiency. Instead, lifetime and reliability become the decisive criteria for commercialization. This requires a standardized and scalable architecture which does fulfill all requirements for larger area solution processing. One of the most highly demanded technologies is a low temperature and printable conductive ink to substitute evaporated metal electrodes for the top contact. Importantly, that electrode technology must have higher environmental stability than, for instance, an evaporated silver (Ag) electrode. Herein, planar and entirely low-temperature-processed perovskite devices with a printed carbon top electrode are demonstrated. The carbon electrode shows superior photostability compared to reference devices with an evaporated Ag top electrode. As hole transport material, poly (3' hexyl thiophene) (P3HT) and copper(I) thiocyanate (CuSCN), two cost-effective and commercially available p-type semiconductors are identified to effectively replace the costlier 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)9,9'-spirobifluorene (spiro-MeOTAD). While methylammonium lead iodide (MAPbI(3))-based perovskite solar cells (PSCs) with an evaporated Ag electrode degrade within 100 h under simulated sunlight (AM 1.5), fully solution-processed PSCs with printed carbon electrodes preserve more than 80% of their initial PCE after 1000 h of constant illumination.
机译:基于混合有机卤化钙钛矿的薄膜太阳能电池可实现超过22%的功率转换效率(PCE)。如此高性能的光伏技术不再受到效率的限制。相反,寿命和可靠性成为商业化的决定性标准。这就需要一个标准化且可扩展的体系结构,该体系结构必须满足大面积解决方案处理的所有要求。需求最旺盛的技术之一是低温且可印刷的导电油墨,用以代替蒸发的金属电极代替顶部触点。重要的是,该电极技术必须比例如蒸发的银(Ag)电极具有更高的环境稳定性。在此,说明了具有印刷的碳顶电极的平面且完全低温处理的钙钛矿装置。与带有蒸发式Ag顶部电极的参比设备相比,碳电极显示出优异的光稳定性。作为空穴传输材料,聚(3'己基噻吩)(P3HT)和硫氰酸铜(I)(CuSCN)被确定为两种成本有效且可商购的p型半导体,以有效替代价格较高的2,2',7, 7'-四烷基-(N,N-二-4-甲氧基苯基氨基)9,9'-螺二芴(spiro-MeOTAD)。带有蒸发的Ag电极的基于甲基铵碘化铅(MAPbI(3))的钙钛矿太阳能电池(PSC)在模拟阳光下(AM 1.5)在100 h内降解,而带有印刷碳电极的完全固溶处理的PSC保留了80%以上的碳持续照明1000小时后其初始PCE。

著录项

  • 来源
    《Advanced energy materials》 |2018年第31期|1802085.1-1802085.6|共6页
  • 作者单位

    Sharif Univ Technol, Inst Nanosci & Nanotechnol INST, Azadi Ave, Tehran 1458889694, Iran;

    Friedrich Alexander Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Inst Mat Elect & Energy Technol, Martensstr 7, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Inst Mat Elect & Energy Technol, Martensstr 7, D-91058 Erlangen, Germany;

    Mat & Energy Res Ctr, Dept Nanotechnol & Adv Mat, Karaj 31787316, Iran;

    Sharif Univ Technol, Inst Nanosci & Nanotechnol INST, Azadi Ave, Tehran 1458889694, Iran;

    Bavarian Ctr Appl Energy Res ZAE Bayern, Weichselgarten 7, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Inst Mat Elect & Energy Technol, Martensstr 7, D-91058 Erlangen, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    carbon electrodes; hole transporting material; perovskite solar cells; photovoltaic devices; stability;

    机译:碳电极;空穴传输材料;钙钛矿太阳能电池;光伏装置;稳定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号