首页> 外文期刊>Advanced energy materials >Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density
【24h】

Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density

机译:具有互穿梯度结构的聚合物纳米复合材料,具有超高的放电效率和能量密度

获取原文
获取原文并翻译 | 示例
           

摘要

Poly(vinylidene fluoride) (PVDF) based polymer nanocomposites with high-permittivity nanofillers exhibit outstanding dielectric energy storage performance due to their high dielectric permittivities and breakdown strength. However, their discharge efficiency is relatively low (usually lower than 70%), which limits their practical applications. Here, polymer nanocomposites with a novel interpenetrating gradient structure are designed and demonstrated by cofilling a PVDF matrix with barium zirconate titanate nanofibers and hexagonal boron nitride nanosheets via modified nonequilibrium processing. The interpenetrating gradient structure is highly effective in breaking the trade-off between discharge energy density and efficiency of the corresponding nanocomposite, as indicated by the concomitantly enhanced discharge energy density (U-e approximate to 23.4 J cm(-3)) and discharge efficiency (eta approximate to 83%). The superior performance is primarily attributed to the rational distribution of nanofillers in the polymer matrix, which raises the height of the potential barrier for charge injection at the dielectric/electrode interface, suppresses electric conduction and contributes to enhanced apparent breakdown strength. Meanwhile, the gradient configuration allows higher volume fraction of high-permittivity nanofillers without compromising the breakdown strength, leading to higher electric polarization compared with the random configuration. This work provides new opportunities to PVDF-based polymer nanocomposites with high energy density and discharge efficiency for capacitive energy storage applications.
机译:具有高介电常数纳米填料的聚偏二氟乙烯(PVDF)基聚合物纳米复合材料由于其高介电常数和击穿强度而具有出色的介电储能性能。但是,它们的放电效率相对较低(通常低于70%),这限制了它们的实际应用。在这里,通过改进的非平衡处理,通过将PVDF基质与锆酸钛酸钛酸酯纳米纤维和六方氮化硼纳米片共填充,设计并演示了具有新型互穿梯度结构的聚合物纳米复合材料。互穿梯度结构在打破放电能量密度与相应纳米复合材料的效率之间的折衷方面非常有效,如随之增强的放电能量密度(Ue约23.4 J cm(-3))和放电效率(η约占83%)。优异的性能主要归因于纳米填料在聚合物基体中的合理分布,从而提高了电介质/电极界面处电荷注入的势垒的高度,抑制了电导通,并有助于增强了表观击穿强度。同时,与无规构造相比,梯度构造允许较高介电常数的纳米填料的更高体积分数而不损害击穿强度,从而导致更高的电极化。这项工作为具有高能量密度和放电效率的基于PVDF的聚合物纳米复合材料提供了新的机遇,可用于电容式储能应用。

著录项

  • 来源
    《Advanced energy materials》 |2019年第15期|1803411.1-1803411.9|共9页
  • 作者单位

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China|Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China|Tsinghua Univ, Ctr Flexible Elect Technol, Beijing 100084, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BN nanosheets; charge injection; discharge efficiency; gradient structure; PVDF;

    机译:BN纳米片;电荷注入;放电效率;梯度结​​构;PVDF;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号