首页> 外文期刊>Advanced energy materials >Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction
【24h】

Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction

机译:石墨烯支持的单原子催化氢发生反应的催化剂的合理设计

获取原文
获取原文并翻译 | 示例
           

摘要

The proper choice of nonprecious transition metals as single atom catalysts (SACs) remains unclear for designing highly efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, reported is an activity correlation with catalysts, electronic structure, in order to clarify the origin of reactivity for a series of transition metals supported on nitrogen-doped graphene as SACs for HER by a combination of density functional theory calculations and electrochemical measurements. Only few of the transition metals (e.g., Co, Cr, Fe, Rh, and V) as SACs show good catalytic activity toward HER as their Gibbs free energies are varied between the range of -0.20 to 0.30 eV but among which Co-SAC exhibits the highest electrochemical activity at 0.13 eV. Electronic structure studies show that the energy states of active valence d(z)(2) orbitals and their resulting antibonding state determine the catalytic activity for HER. The fact that the antibonding state orbital is neither completely empty nor fully filled in the case of Co-SAC is the main reason for its ideal hydrogen adsorption energy. Moreover, the electrochemical measurement shows that Co-SAC exhibits a superior hydrogen evolution activity over Ni-SAC and W-SAC, confirming the theoretical calculation. This systematic study gives a fundamental understanding about the design of highly efficient SACs for HER.
机译:对于设计用于析氢反应(HER)的高效电催化剂,尚不清楚选择非贵金属作为单原子催化剂(SAC)的过渡金属。本文中,报道了与催化剂,电子结构的活性相关性,以通过结合密度泛函理论计算和电化学测量来阐明负载在氮掺杂石墨烯上作为HER的SAC的一系列过渡金属的反应性的起源。由于SAC的过渡金属(例如Co,Cr,Fe,Rh和V)的吉布斯自由能在-0.20至0.30 eV之间变化,因此只有极少数对HER表现出良好的催化活性。在0.13 eV时具有最高的电化学活性。电子结构研究表明,活性价d(z)(2)轨道的能量态及其产生的反键态决定了HER的催化活性。在Co-SAC的情况下,反键态轨道既不完全为空也不完全填充,这是其理想的氢吸附能的主要原因。此外,电化学测量表明,Co-SAC具有比Ni-SAC和W-SAC更好的析氢活性,从而证实了理论计算。这项系统的研究对HER的高效SAC的设计提供了基本的了解。

著录项

  • 来源
    《Advanced energy materials》 |2019年第10期|1803689.1 -1803689.10|共10页
  • 作者单位

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

    Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA;

    Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USA;

    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA;

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

    Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA;

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

    Smart Mat Res Inst, Rostov Na Donu 344090, Russia;

    Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Jiangsu, Peoples R China;

    Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA|Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA;

    Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USA;

    Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China|Hong Kong Univ Sci & Technol, Ctr Tissue Restorat & Reconstruct, Chinese Natl Engn Res Ctr, Hong Kong Branch,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    charge transfer; density functional theory; density of states; hydrogen evolution reaction; single atom catalysts;

    机译:电荷转移密度泛函理论态密度析氢反应单原子催化剂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号