首页> 外文期刊>Advanced energy materials >Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion
【24h】

Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion

机译:硅纳米层嵌入式石墨上的稳健间距可抑制不希望的体积膨胀

获取原文
获取原文并翻译 | 示例
           

摘要

A significant volume expansion exhibited by high-capacity active materials upon lithiation has hindered their application as Li-ion battery anode materials. Although tremendous progress has been made in the development of coating methods that improve the stability of high-capacity active materials, suitable coating sources that are both strong and economical to use are yet to be discovered. Pitch is reported here as a promising coating source for high-capacity anodes owing to the high mechanical strength and low-cost process. Using in situ transmission electron microscopy, it is found that pitch can withstand the severe volume expansion that occurs upon Si lithiation owing to its high mechanical strength, originating from the long-range graphitic ordering. Notably, pitch-coated silicon nanolayer-embedded graphite (SG) exhibits superior capacity retention (81.9%) compared to that of acetylene-coated SG (66%) over 200 cycles in a full-cell by effectively mitigating volume expansion, even under industrial electrode density conditions (1.6 g cc(-1)). Thus, this work presents new possibilities for the development of high-capacity anodes for industrial implementation.
机译:高容量活性材料在锂化时表现出明显的体积膨胀,阻碍了它们作为锂离子电池负极材料的应用。尽管在改善高容量活性材料的稳定性的涂覆方法的开发方面已经取得了巨大的进步,但尚未发现既坚固又使用经济的合适涂覆源。由于高机械强度和低成本工艺,据报道沥青在大容量阳极方面是有希望的涂料来源。使用原位透射电子显微镜发现,由于硅的长距离石墨有序化,其高机械强度使沥青能够承受硅锂化时发生的剧烈体积膨胀。值得注意的是,沥青涂层硅纳米层嵌入式石墨(SG)在全电池中200次循环中比乙炔涂层SG(66%)表现出优异的容量保持率(81.9%),即使在工业环境下也能有效缓解体积膨胀电极密度条件(1.6 g cc(-1))。因此,这项工作为开发用于工业实施的高容量阳极提供了新的可能性。

著录项

  • 来源
    《Advanced energy materials》 |2019年第4期|1803121.1-1803121.9|共9页
  • 作者单位

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea|Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea;

    Pukyong Natl Univ, Dept Met Engn, Busan 48547, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

    Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lithium ion batteries; pitch; Si anodes; solid electrolyte interphase; volume expansion;

    机译:锂离子电池;节距;硅阳极;固体电解质界面;体积膨胀;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号