首页> 外文期刊>Advanced energy materials >Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor
【24h】

Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor

机译:CoP / NiCoP纳米ta异质结界面的构建,用于宽pH值析氢电催化和超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Constructing well defined nanostructures is promising but still challenging for high-efficiency catalysts for hydrogen evolution reaction (HER) and energy storage. Herein, utilizing the differences in surface energies between (111) facets of CoP and NiCoP, a novel CoP/NiCoP heterojunction is designed and synthesized with a nanotadpoles (NTs)-like morphology via a solid-state phase transformation strategy. By effective interface construction, the disorder in terms of electronic structure and coordination environment at the interface in CoP/NiCoP NTs is created, which leads to dramatically elevated HER performance within a wide pH range. Theoretical calculations prove that an optimized proton chemisorption and H2O dissociation are achieved by an optimized phosphide polymorph at the interface, accelerating the HER reaction. The CoP/NiCoP NTs are also proved to be excellent candidates for use in supercapacitors (SCs) with a high specific capacitance (1106.2 F g(-1) at 1 A g(-1)) and good cycling stability (nearly 100% initial capacity retention after 1000 cycles). An asymmetric supercapacitor shows a high energy density (145 F g(-1) at 1 A g(-1)) and good cycling stability (capacitance retention is 95% after 3200 cycles). This work provides new insights into the catalyst design for electrocatalytic and energy storage applications.
机译:构建良好定义的纳米结构是有前途的,但对于用于氢析出反应(HER)和能量存储的高效催化剂而言仍然具有挑战性。本文中,利用CoP和NiCoP的(111)面之间的表面能差异,设计并合成了新型CoP / NiCoP异质结,并通过固态相变策略合成了类似纳米ta(NTs)的形态。通过有效的界面构建,在CoP / NiCoP NTs界面上产生了电子结构和配位环境方面的混乱,这导致在宽pH范围内HER性能显着提高。理论计算证明,通过优化界面处的磷化物多晶型物可实现优化的质子化学吸附和H2O离解,从而加速HER反应。 CoP / NiCoP NTs也被证明是超级电容器(SC)的极佳候选者,它们具有高的比电容(在1 A g(-1)时为1106.2 F g(-1))和良好的循环稳定性(初始时接近100%) 1000次循环后的容量保持率)。非对称超级电容器显示出高能量密度(在1 A g(-1)时为145 F g(-1))和良好的循环稳定性(3200次循环后电容保持率为95%)。这项工作为电催化和能量存储应用的催化剂设计提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号