首页> 外文期刊>Advanced energy materials >Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis
【24h】

Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis

机译:聚合物电解质水电解的分层结构多孔传输层

获取原文
获取原文并翻译 | 示例
           

摘要

The high operational and capital costs of polymer electrolyte water electrolysis technology originate from limited catalyst utilization and the use of thick membrane electrolytes. This is due to the coarse surface structure of the state-of-the-art titanium porous transport layer materials used. Therefore, a series of materials with three different microporous layers (MPLs) with advanced interface properties are fabricated and characterized. It is shown that these sintered multilayer structures, made from economically viable titanium powders, have improved interface properties with low surface roughness, as characterized by X-ray laboratory and synchrotron-based tomographic microscopy. The transport layer materials provide superior electrochemical performance in comparison to conventional single-layer structures, with up to three times higher catalyst layer utilization and a approximate to 60 mV decrease in (anodic) mass transport overpotential at 2 A cm(-2). The MPLs combine preferential surface properties with high open porosity and low tortuosity of sinter materials, enabling for the first time the use of thin membranes, in combination with anodic titanium transport layers. The fundamental mechanism of the MPL effect is elucidated and shown to be based on a homogeneous contact pressure distribution, resulting in high catalyst utilization and low mass transport losses.
机译:聚合物电解质水电解技术的高运营成本和资本成本源于有限的催化剂利用和厚膜电解质的使用。这归因于所使用的最新技术的钛多孔传输层材料的粗糙表面结构。因此,制造并表征了具有三种具有先进界面特性的不同微孔层(MPL)的材料。结果表明,由X射线实验室和基于同步加速器的断层扫描显微镜表征,由经济上可行的钛粉制成的这些烧结多层结构具有改善的界面性能和较低的表面粗糙度。与传统的单层结构相比,传输层材料提供了优异的电化学性能,在2 A cm(-2)时,催化剂层利用率提高了三倍,并且(阳极)质量传输过电势降低了约60 mV。 MPL将优先的表面性能与烧结材料的高开孔率和低曲折度结合在一起,从而首次将薄膜与阳极钛传输层结合使用。阐明了MPL效应的基本机理,并表明该机理基于均匀的接触压力分布,从而导致催化剂利用率高和传质损失小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号