首页> 外文期刊>Advanced energy materials >Stable Nano-Encapsulation of Lithium Through Seed- Free Selective Deposition for High-Performance Li Battery Anodes
【24h】

Stable Nano-Encapsulation of Lithium Through Seed- Free Selective Deposition for High-Performance Li Battery Anodes

机译:通过无籽选择性沉积对高性能锂电池阳极进行稳定的锂纳米封装

获取原文
获取原文并翻译 | 示例
           

摘要

Metallic lithium has long been deemed as the ultimate anode material for future high-energy-density Li batteries. However, the commercialization of Li metal anodes remains hindered by some major hurdles including their huge volume fluctuation during cycling, unstable solid electrolyte interface (SEI), and dendritic deposition. Herein, the concept of nano-encapsulating electrode materials is attempted to tackle these problems. Nitrogen-doped hollow porous carbon spheres (N-HPCSs), prepared via a facile and low-cost method, serve as the nanocapsules. Each N-HPCS has a lithophilic carbon shell with a thin N-rich denser layer on its inner surface, which enables preferential nucleation of Li inside the hollow sphere. It is demonstrated by in situ electron microscopy that these N-HPCS hosts allow Li to be encapsulated in a highly reversible and repeatable manner. Ultralong Li filling/stripping cycling inside single N-HPCSs is achieved, up to 50 cycles for the first time. Li ion transport across multiple connected N-HPCSs, leading to long-range Li deposition inside their cavities, is visualized. In comparison, other types of carbon spheres with modified shell structures fail in encapsulating Li and dendrite suppression. The necessity of the specific shell design is therefore confirmed for stable Li encapsulation, which is essential for the N-HPCS-based anodes to achieve superior cycling performance.
机译:长期以来,金属锂一直被认为是未来高能量密度锂电池的最终负极材料。然而,锂金属阳极的商业化仍然受到一些主要障碍的阻碍,这些障碍包括它们在循环过程中的巨大体积波动,不稳定的固体电解质界面(SEI)和树枝状沉积。在此,尝试纳米封装电极材料的概念来解决这些问题。通过便捷且低成本的方法制备的氮掺杂空心多孔碳球(N-HPCS)用作纳米胶囊。每个N-HPCS均具有亲石性碳壳,其内表面具有一层富N的薄致密层,这使得Li在空心球内优先成核。通过原位电子显微镜证明,这些N-HPCS主体允许Li以高度可逆和可重复的方式被封装。单个N-HPCS内部实现了超长的Li填充/剥离循环,首次达到了50个循环。可以看到锂离子在多个连接的N-HPCS之间的迁移,从而导致其腔内长距离沉积Li。相比之下,其他类型的具有修饰壳结构的碳球在封装Li和枝晶抑制方面均失败。因此,确定了特定的外壳设计对于稳定的Li封装的必要性,这对于基于N-HPCS的阳极实现出色的循环性能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号