首页> 外文期刊>Advanced energy materials >Building Electron/Proton Nanohighways for Full Utilization of Water Splitting Catalysts
【24h】

Building Electron/Proton Nanohighways for Full Utilization of Water Splitting Catalysts

机译:建造电子/质子纳米高速公路以充分利用水分解催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Low electron/proton conductivities of electrochemical catalysts, especially earth-abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple-phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (approximate to 0.1 mg cm(-2)) augments reaction sites from 1D to 2D, resulting in an 18-fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar-electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity-determining and Debye-length-determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high-efficiency electrochemical energy conversion devices.
机译:电化学催化剂,特别是富含地球的非贵金属催化剂的低电子/质子电导率严重限制了它们满足三相边界(TPB)理论的能力,导致催化剂利用率极低,并且在能源设备中效率不足。在这里,提出了一种创新的电极设计策略,以构建电子/质子传输纳米高速公路,以确保整个电极满足TPB,从而显着促进增强的析氧反应和催化剂利用率。发现容易获得/可调的介孔金纳米层(AuNLs)不仅将电极电导率提高了4000倍以上,而且还使质子能够通过德拜长度内的直介孔传输。具有AuNLs和超低催化剂装载量(约0.1 mg cm(-2))的催化剂层设计可将反应位点从1D增加到2D,从而使质量活性提高18倍。此外,使用微型可视化技术和独特的共面电极电解槽,可以揭示电导率与反应部位之间的关系,从而可以发现用于水分解的电导率确定区域和德拜长度确定区域。这些发现和策略提供了一种新颖的电极设计(催化剂层+功能子层+离子交换膜),具有足够的电子/质子传输路径,可用于高效电化学能量转换设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号