首页> 外文期刊>Advanced energy materials >Nonuniform Ionic and Electronic Transport of Ceramic and Polymer/Ceramic Hybrid Electrolyte by Nanometer-Scale Operando Imaging for Solid-State Battery
【24h】

Nonuniform Ionic and Electronic Transport of Ceramic and Polymer/Ceramic Hybrid Electrolyte by Nanometer-Scale Operando Imaging for Solid-State Battery

机译:纳米尺度Operando成像用于固态电池的非均匀离子和电子传输陶瓷和聚合物/陶瓷混合电解质

获取原文
获取原文并翻译 | 示例
           

摘要

Replacing the liquid electrolyte in lithium batteries with solid-state ion conductor is promising for next-generation energy storage that is safe and has high energy density. Here, nanometer-resolution ionic and electronic transport imaging of Li3PS4 (LPS), a solid-state electrolyte (SSE), is reported. This nm resolution is achieved by using a logarithm-scale current amplifier that enhances the current sensitivity to the fA range. Large fluctuations of ion current-one to two orders of magnitude on the LPS and on the LPS region of a polymer/LPS bulk hybrid SSE-that must be mitigated to eliminate Li dendrite formation and growth, are found. This ion current fluctuation is understood in terms of highly anisotropic transport kinetic barriers along the different crystalline axes due to different grain orientations in the polycrystalline and glass ceramic materials. The results on the bulk hybrid SSE show a sharp transition of ionic and electronic transport at the LPS/polymer boundary and decreases in average ionic current with decreasing polyimine particle size and with extensive cycling. The results elucidate the mechanism of polyimine extension into interparticles to prevent Li dendrite growth. This work opens up novel characterization of charge transport, which relates to Li plating and stripping for solid-state-batteries.
机译:用固态离子导体替换锂电池中的液体电解质对于下一代储能,这是安全的并且具有高能量密度。这里,报道了纳米分辨率离子和电子传输成像,Li3PS4(LPS),固态电解质(SSE)。通过使用对数级电流放大器来实现该NM分辨率,该放大器可以增强对FA范围的电流灵敏度。在LPS上和聚合物/ LPS杂交SSE的LPS和LPS区域上的大量离子电流波动 - 必须减轻李枝氏形成和生长。由于多晶和玻璃陶瓷材料中的不同晶粒取向,就沿着不同的结晶轴线的高各向异性传输动力学屏障而言,该离子电流波动应理解。本体杂交SSE上的结果显示LPS /聚合物边界处的离子和电子传输的急剧过渡,并降低了多亚胺粒度和广泛循环的平均离子电流。结果阐明了聚亚胺延伸到间际以防止Li Dendrite生长的机制。这项工作开辟了电荷运输的新颖性,这与固态电池的锂电镀和剥离有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号