首页> 外文期刊>Advanced energy materials >3D-Printed Cathodes of LiMn_(1-x)Fe_xPO_4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium-Ion Battery
【24h】

3D-Printed Cathodes of LiMn_(1-x)Fe_xPO_4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium-Ion Battery

机译:LIMN_(1-x)FE_XPO_4纳米晶体的3D印刷阴极均可实现高级锂离子电池的超高速率和高容量

获取原文
获取原文并翻译 | 示例
           

摘要

A 3D-printing technology and printed 3D lithium-ion batteries (3D-printed LIBs) based on LiMn0.21Fe0.79PO4@C (LMFP) nanocrystal cathodes are developed to achieve both ultrahigh rate and high capacity. Coin cells with 3D-printed cathodes show impressive electrochemical performance: a capacity of 108.45 mAh g(-1) at 100 C and a reversible capacity of 150.21 mAh g(-1) at 10 C after 1000 cycles. In combination with simulation using a pseudo 2D hidden Markov model and experimental data of 3D-printed and traditional electrodes, for the first time deep insight into how to achieve the ultrahigh rate performance for a cathode with LMFP nanocrystals is obtained. It is estimated that the Li-ion diffusion in LMFP nanocrystal is not the rate-limitation step for the rate to 100 C, however, that the electrolyte diffusion factors, such as solution intrinsic diffusion coefficient, efficiency porosity, and electrode thickness, will dominate ultrahigh rate performance of the cathode. Furthermore, the calculations indicate that the above factors play important roles in the equivalent diffusion coefficient with the electrode beyond a certain thickness, which determines the whole kinetic process in LIBs. This fundamental study should provide helpful guidance for future design of LIBs with superior electrochemical performance.
机译:基于LIMN0.21FE0.79PO4的3D印刷技术和印花3D锂离子电池(3D印刷品LIB)开发至纳米晶体阴极,以实现超高率和高容量。带有3D印刷阴极的硬币细胞显示出令人印象深刻的电化学性能:100℃的容量为100℃,在1000次循环后10℃下可逆容量为150.21mahg(-1)。结合使用伪2D隐马尔可夫模型和3D印刷和传统电极的实验数据的模拟,首次深入了解如何实现具有LMFP纳米晶体的阴极的超高速率性能。据估计,LMFP纳米晶体中的锂离子扩散不是速率为100℃的速率限制步骤,然而,电解质扩散因子,例如溶液内在扩散系数,效率孔隙率和电极厚度,将占主导地位阴极的超高速率性能。此外,计算表明,上述因素在等效的扩散系数中发挥重要作用,该电极在超过一定厚度的电极中,这决定了LIBS中的整个动力学过程。这项基本研究应为未来的LIBS设计提供有用的指导,具有卓越的电化学性能。

著录项

  • 来源
    《Advanced energy materials》 |2016年第18期|1600856.1-1600856.8|共8页
  • 作者单位

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China|Argonne Natl Lab Chem Sci & Engn Div Electrochem Technol Program 9700 S Cass Ave Argonne IL 60439 USA;

    Peking Univ Shenzhen Grad Sch Sch Adv Mat Shenzhen 518055 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号