首页> 外文期刊>Advanced energy materials >A Bottom-Up Approach toward All-Solution-Processed High-Efficiency Cu(ln,Ga)S_2 Photocathodes for Solar Water Splitting
【24h】

A Bottom-Up Approach toward All-Solution-Processed High-Efficiency Cu(ln,Ga)S_2 Photocathodes for Solar Water Splitting

机译:用于太阳能水分裂的全溶液加工高效Cu(LN,GA)S_2光电阴影的自下而上的方法

获取原文
获取原文并翻译 | 示例
           

摘要

The development of solution-processable routes to prepare efficient photoelectrodes for water splitting is highly desirable to reduce manufacturing costs. Recently, sulfide chalcopyrites (Cu(In,Ga)S-2) have attracted attention as photocathodes for hydrogen evolution owing to their outstanding optoelectronic properties and their band gap-wider than their selenide counterparts-which can potentially increase the attainable photovoltage. A straightforward and all-solution-processable approach for the fabrication of highly efficient photocathodes based on Cu(In,Ga)S-2 is reported for the first time. It is demonstrated that semiconductor nanocrystals can be successfully employed as building blocks to prepare phase-pure microcrystalline thin films by incorporating different additives (Sb, Bi, Mg) that promote the coalescence of the nanocrystals during annealing. Importantly, the grain size is directly correlated to improved charge transport for Sb and Bi additives, but it is shown that secondary effects can be detrimental to performance even with large grains (for Mg). For optimized electrodes, the sequential deposition of thin layers of n-type CdS and TiO2 by solution-based methods, and platinum as an electrocatalyst, leads to stable photocurrents saturating at 8.0 mA cm(-2) and onsetting at similar to 0.6 V versus RHE under AM 1.5G illumination for CuInS2 films. Electrodes prepared by our method rival the state-of-the-art performance for these materials.
机译:用于制备用于水分裂的高效光电系的解决方案的开发是非常理想的,以降低制造成本。最近,由于其出色的光电性质及其带隙 - 宽的氢气进化,硫化物硫化物(Cu(In,Ga)S-2)引起了氢气进化的光致扫描器,这可能会增加可达到可达到可达到的光伏电压的光电变速器。首次报告基于Cu(In,Ga)S-2的高效光电阴极制备的直接和全解决的方法。结果证明,半导体纳米晶体可以成功地用作结构块,以制备相纯微晶薄膜通过掺入促进在退火期间纳米晶体的聚结的不同的添加剂(Sb,Bi,Mg)制备相纯微晶薄膜。重要的是,晶粒尺寸与改善Sb和Bi添加剂的电荷传输直接相关,但结果表明,即使用大颗粒(用于mg),二次效果也可能对性能有害。对于优化的电极,通过基于溶液的方法和铂作为电催化剂的薄层薄层的顺序沉积,作为电催化剂,导致饱和在8.0mA cm(-2)下饱和,并在类似于0.6V的情况下进行稳定的光电流。 rhe在Cuins2薄膜的am 1.5g照射下。通过我们的方法制备的电极媲美这些材料的最先进的性能。

著录项

  • 来源
    《Advanced energy materials》 |2016年第7期|1501949.1-1501949.13|共13页
  • 作者单位

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Mol Engn Optoelect Nanomat Stn 6 CH-1015 Lausanne Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号