首页> 外文期刊>Advanced energy materials >Understanding the Film Formation Kinetics of Sequential Deposited Narrow-Bandgap Pb–Sn Hybrid Perovskite Films
【24h】

Understanding the Film Formation Kinetics of Sequential Deposited Narrow-Bandgap Pb–Sn Hybrid Perovskite Films

机译:了解顺序沉积窄带胶凝PB-SN杂交钙矿膜的膜形成动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Developing efficient narrow bandgap Pb-Sn hybrid perovskite solar cells with high Sn-content is crucial for perovskite-based tandem devices. Film properties such as crystallinity, morphology, surface roughness, and homogeneity dictate photovoltaic performance. However, compared to Pb-based analogs, controlling the formation of Sn-containing perovskite films is much more challenging. A deeper understanding of the growth mechanisms in Pb-Sn hybrid perovskites is needed to improve power conversion efficiencies. Here, in situ optical spectroscopy is performed during sequential deposition of Pb-Sn hybrid perovskite films and combined with ex situ characterization techniques to reveal the temporal evolution of crystallization in Pb-Sn hybrid perovskite films. Using a two-step deposition method, homogeneous crystallization of mixed Pb-Sn perovskites can be achieved. Solar cells based on the narrow bandgap (1.23 eV) FA(0.66)MA(0.34)Pb(0.5)Sn(0.5)I(3) perovskite absorber exhibit the highest efficiency among mixed Pb-Sn perovskites and feature a relatively low dark carrier density compared to Sn-rich devices. By passivating defect sites on the perovskite surface, the device achieves a power conversion efficiency of 16.1%, which is the highest efficiency reported for sequential solution-processed narrow bandgap perovskite solar cells with 50% Sn-content.
机译:具有高Sn含量的显影高效窄带隙PB-SN杂交钙钛矿太阳能电池对于基于Perovskite的串联装置至关重要。薄膜性质如结晶度,形态,表面粗糙度和均匀性决定光伏性能。然而,与基于PB的类似物相比,控制含Sn的钙钛矿薄膜的形成更具挑战性。需要更深入地理解PB-SN杂交钙酯的生长机制,以提高电力转换效率。这里,在原位光学光谱期间在Pb-Sn杂交钙钛矿膜的顺序沉积期间进行,并结合前原位表征技术,以揭示PB-SN杂交钙钛矿膜中结晶的时间演变。使用两步沉积方法,可以实现混合PB-Sn Perovskites的均匀结晶。基于窄带隙(1.23eV)FA(0.66)MA(0.34)Pb(0.5)Sn(0.5)I(3)钙钛矿吸收剂的太阳能电池在混合PB-Sn Perovskites中表现出相对低的暗载体的最高效率密度与富含Sn的器件相比。通过静态渗透地面上的缺陷网站,该装置实现了16.1%的功率转换效率,这是序列解决方案处理的窄带凝聚力凝血率太阳能电池的最高效率为50%SN含量。

著录项

  • 来源
    《Advanced energy materials》 |2020年第22期|2000566.1-2000566.9|共9页
  • 作者单位

    Eindhoven Univ Technol Mol Mat & Nanosyst POB 513 NL-5600 MB Eindhoven Netherlands|Eindhoven Univ Technol Inst Complex Mol Syst POB 513 NL-5600 MB Eindhoven Netherlands;

    Eindhoven Univ Technol Mol Mat & Nanosyst POB 513 NL-5600 MB Eindhoven Netherlands|Eindhoven Univ Technol Inst Complex Mol Syst POB 513 NL-5600 MB Eindhoven Netherlands;

    Eindhoven Univ Technol Mol Mat & Nanosyst POB 513 NL-5600 MB Eindhoven Netherlands|Eindhoven Univ Technol Inst Complex Mol Syst POB 513 NL-5600 MB Eindhoven Netherlands;

    Eindhoven Univ Technol Dept Appl Phys POB 513 NL-5600 MB Eindhoven Netherlands|Eurofins Mat Sci High Tech Campus 11 NL-5656 AE Eindhoven Netherlands;

    Eindhoven Univ Technol Mol Mat & Nanosyst POB 513 NL-5600 MB Eindhoven Netherlands|Eindhoven Univ Technol Inst Complex Mol Syst POB 513 NL-5600 MB Eindhoven Netherlands|TNO Solliance High Tech Campus 21 NL-5656 AE Eindhoven Netherlands;

    Eindhoven Univ Technol Mol Mat & Nanosyst POB 513 NL-5600 MB Eindhoven Netherlands|Eindhoven Univ Technol Inst Complex Mol Syst POB 513 NL-5600 MB Eindhoven Netherlands;

    Eindhoven Univ Technol Mol Mat & Nanosyst POB 513 NL-5600 MB Eindhoven Netherlands|Eindhoven Univ Technol Inst Complex Mol Syst POB 513 NL-5600 MB Eindhoven Netherlands|Dutch Inst Fundamental Energy Res De Zaale 20 NL-5612 AJ Eindhoven Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    crystallization; film formation; metal halide perovskites; narrow bandgap; solar cells;

    机译:结晶;成膜;金属卤化物钙矿;窄带隙;太阳能电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号