首页> 外文期刊>Advanced energy materials >Reversible Short-Circuit Behaviors in Garnet-Based Solid-State Batteries
【24h】

Reversible Short-Circuit Behaviors in Garnet-Based Solid-State Batteries

机译:基于石榴石固态电池的可逆短路行为

获取原文
获取原文并翻译 | 示例
           

摘要

Garnet-based solid-state electrolytes (SSEs) are attractive for solid-state lithium metal batteries due to their wide electrochemical window, high conductivity, and excellent stability against lithium metal. However, the risk of short-circuit encumbers the cycle life and capacity of garnet-based solid-state batteries without clear reason or mechanism. Here, reversible short-circuit behavior in the garnet-based solid-state batteries, which differs from the short-circuit in liquid cells, is reported for the first time. In situ neutron depth profiling is adopted to quantitatively measure Li transport, which helps forecast and confirm the reversible nature of the short-circuit in garnet-based batteries. A real-time Li accumulation monitoring system of NMC//CNT/garnet/Li cell is designed to reveal the Li dendrite formation mechanism. The voltage drops of the CNT monitoring electrode during the charging process indicate the formation of Li dendrites inside the garnet bulk, while the smooth voltage profile during the discharging process demonstrates the disappearance of the short-circuit. This is the first confirmation of short-circuit behavior that provides clarification of the Li dendrite formation mechanism in garnet-based solid-state batteries, which is shown to be a reversible process caused by the low ionic conductivity and non-negligible electronic conductivity of garnet SSEs.
机译:基于石榴石的固态电解质(SSES)由于其宽的电化学窗口,高导电性和对锂金属的优异稳定性,对于固态锂金属电池具有吸引力。然而,短路的风险阻碍了基于石榴石的固态电池的循环寿命和容量,而不是明确的理由或机制。这里,首次报道基于石榴石的固态电池中的可逆短路行为,其与液体电池短路不同。采用原位中子深度分析来定量测量李运输,这有助于预测并确认基于石榴石电池短路的可逆性。 NMC // CNT / GARNET / Li Cell的实时Li累积监测系统旨在露出Li Dendrite形成机制。 CNT监测电极在充电过程中的电压降表明石榴石块内的Li Dendrites的形成,而放电过程中的平滑电压曲线展示了短路的消失。这是第一次确认短路行为,提供了基于石榴石的固态电池中的Li Dendrite形成机制的澄清,其被示出为由低离子电导率和石榴石的不可忽略的电子电导率引起的可逆过程SSES。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号