首页> 外文期刊>Advanced energy materials >Understanding the Capacity Fading Mechanisms of O3-Type Na[Ni_(0.5)Mn_(0.5)]O2 Cathode for Sodium-Ion Batteries
【24h】

Understanding the Capacity Fading Mechanisms of O3-Type Na[Ni_(0.5)Mn_(0.5)]O2 Cathode for Sodium-Ion Batteries

机译:了解钠离子电池的O3型Na [Ni_(0.5)Mn_(0.5)] O2阴极的容量衰落机制

获取原文
获取原文并翻译 | 示例
           

摘要

A spherical O3-type Na[Ni0.5Mn0.5]O(2)cathode, composed of compactly-packed nanosized primary particles, is synthesized by the coprecipitation method to examine its capacity fading mechanism. The electrochemical performance cycled at different upper cut-off voltages demonstrate that the P3 ' to O3 ' phase transition above 3.6 V is primarily responsible for the loss of the structural stability of the O3-type Na[Ni0.5Mn0.5]O(2)cathode. The capacity retention is greatly improved by avoiding the P3 ' to O3 ' phase transition, and 94.2% and 90.7% of the initial capacities (108.9 mAh g(-1)at 3.35 V and 125.4 mAh g(-1)at 3.58 V) are retained after 100 cycles. During cycling at 4.0 V, rapid capacity fading (75.5% of 147.5 mAh g(-1)after 100 cycles) is observed. The poor Na(+)ion intercalation stability is directly attributed to the extent of microcracks caused by the abrupt change in the lattice structure. Microcracks traversing the entire secondary particle compromise the mechanical integrity of the cathode and accelerate electrolyte infiltration into the particle interior, causing the subsequent degradation of the exposed internal surfaces. Thus, suppressing microcracks in secondary particles is one of the key challenges for improving the cycling stability of hierarchical structured O3-type Na[Ni0.5Mn0.5]O(2)cathodes.
机译:由CopRecitipition方法合成由紧凑型纳米型初级颗粒组成的球形O3型Na [Ni0.5mN0.5] O(2)阴极,以检查其容量衰落机制。在不同的上截止电压下循环的电化学性能证明了3.6V以上的P3'至O3'相转变主要负责损失O3型Na [Ni0.5Mn0.5] O的结构稳定性(2 )阴极。通过避免P3'对O3'相转变,初始容量的94.2%和90.7%,在3.58V的3.35 V和125.4mahg(-1)的初始容量中的94.2%和90.7%,大大提高了容量滞留。在100次循环后保留。在4.0 V的循环期间,观察到在100次循环后的快速容量衰落(75.5%占147.5mAhg(-1))。差Na(+)离子插入稳定性直接归因于由晶格结构突然变化引起的微裂纹的程度。穿过整个二级颗粒的微裂纹损害了阴极的机械完整性并将电解质浸润加速到颗粒内部,从而导致暴露的内表面的后续降解。因此,抑制次级颗粒中的微裂纹是改善分层结构O3型Na [Ni0.5Mn0.5] O(2)阴极的循环稳定性的关键挑战之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号