首页> 外文期刊>Advanced energy materials >Reversible Phase Transformations in Novel Ce-Substituted Perovskite Oxide Composites for Solar Thermochemical Redox Splitting of CO_2
【24h】

Reversible Phase Transformations in Novel Ce-Substituted Perovskite Oxide Composites for Solar Thermochemical Redox Splitting of CO_2

机译:用于太阳能热化学氧化钇氧化物复合材料的新型CE替代钙钛矿复合材料的可逆相变性CO_2

获取原文
获取原文并翻译 | 示例
           

摘要

Thermochemical splitting of CO2 and H2O via two-step metal oxide redox cycles offers a promising approach to produce solar fuels. Perovskite-type oxides with the general formula ABO(3) have recently gained attention as an attractive redox material alternative to the state-of-the-art ceria, due to their high structural and thermodynamic tunability. A novel Ce-substituted lanthanum strontium manganite perovskite-oxide composite, La0.483+Sr0.522+(Ce0.064+Mn0.793+)O-2.55 (LSC25M75) is introduced, aiming to bridge the gap between ceria and perovskite oxide-based materials by overcoming their individual thermodynamic constraints. Thermochemical CO2 splitting redox cyclability of LSC25M75 evaluated with a thermogravimetric analyzer and an infrared furnace reactor over 100 consecutive redox cycles demonstrates a twofold higher conversion extent to CO than one of the best Mn-based perovskite oxides, La0.60Sr0.40MnO3. Based on complementary in situ high temperature neutron, synchrotron X-ray, and electron diffraction experiments, unprecedented structural and mechanistic insight is obtained into thermochemical perovskite oxide materials. A novel CO2 splitting reaction mechanism is presented, involving reversible temperature induced phase transitions from the n = 1 Ruddlesden-Popper phase (Sr1.10La0.64Ce0.26)MnO3.88 (I4/mmm, K2NiF4-type) at reduction temperature (1350 degrees C) to the n = 2 Ruddlesden-Popper phase (Sr2.60La0.22Ce0.18)Mn2O6.6 (I4/mmm, Sr3Ti2O7-type) at re-oxidation temperature (1000 degrees C) after the CO2 splitting step.
机译:通过两步金属氧化物氧化还原循环的CO2和H2O的热化学分裂提供了一种有希望的生产太阳能燃料的方法。由于其高结构和热力学可调性,最近,钙钛矿型氧化物与通式ABO(3)作为最先进的二氧化铈的替代品,它最近受到了备有的氧化还原材料。引入了一种新型CE取代的镧锶锰矿石钙钛矿氧化物复合材料,LA0.483 + SR0.522 +(CE0.064 + MN0.793 +)O-2.55(LSC25M75),旨在弥合二氧化铈和钙钛矿之间的差距通过克服各个热力学约束而基于材料。通过热量分析仪和红外炉反应器评估LSC25M75的热化学CO2分裂氧化还原性可防止在100多个连续氧化还原循环中的转化程度与最佳Mn的钙钛矿氧化物,LA0.60sr0.40mNO3的氧化物较高的转化程度较高。基于互补的高温中子,同步调节X射线和电子衍射实验,获得前所未有的结构和机械洞察力,得到热化学钙钛矿氧化物材料。提出了一种新的CO 2分裂反应机理,涉及从N = 1 ruddlesden-popper相(Sr1.10la0.64ce0.26)mnO3.88(I4 / mmm,K2Nif4型)在还原温度(1350在CO 2分裂步骤之后,℃)在再氧化温度(1000℃)的N = 2 ruddlesden-popper相(Sr2.60la0.222ce0.18)Mn2O6.6(I4 / MMM,SR3Ti2O7型)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号