首页> 外文期刊>Advanced energy materials >Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials
【24h】

Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials

机译:热电材料界面/表面改性的当前现有技术

获取原文
获取原文并翻译 | 示例
           

摘要

Thermoelectric (TE) materials are prominent candidates for energy converting applications due to their excellent performance and reliability. Extensive efforts for improving their efficiency in single-/multi-phase composites comprising nano/micro-scale second phases are being made. The artificial decoration of second phases into the thermoelectric matrix in multi-phase composites, which is distinguished from the second-phase precipitation occurring during the thermally equilibrated synthesis of TE materials, can effectively enhance their performance. Theoretically, the interfacial manipulation of phase boundaries can be extended to a wide range of materials. High interface densities decrease thermal conductivity when nano/micro-scale grain boundaries are obtained and certain electronic structure modifications may increase the power factor of TE materials. Based on the distribution of second phases on the interface boundaries, the strategies can be divided into discontinuous and continuous interfacial modifications. The discontinuous interfacial modifications section in this review discusses five parts chosen according to their dispersion forms, including metals, oxides, semiconductors, carbonic compounds, and MXenes. Alternatively, gas- and solution-phase process techniques are adopted for realizing continuous surface changes, like the core-shell structure. This review offers a detailed analysis of the current state-of-the-art in the field, while identifying possibilities and obstacles for improving the performance of TE materials.
机译:热电(TE)材料由于其优异的性能和可靠性而突出的能量转换应用候选者。正在进行广泛的努力,以提高包含纳米/微级第二阶段的单次/多相复合材料的效率。在多相复合材料中将第二阶段的人为装饰在多相复合材料中,与在热平衡的TE材料的热平衡合成期间发生的第二相沉淀,可以有效地提高它们的性能。从理论上讲,相边界的界面操纵可以延伸到各种材料。当获得纳米/微级晶界时,高界面密度降低导热率并且某些电子结构修改可能增加TE材料的功率因数。基于第二阶段对界面边界的分布,策略可分为不连续和连续的界面修改。本次综述中的不连续界面修改部分讨论了根据其分散形式选择的五个部分,包括金属,氧化物,半导体,碳化合物和mxenes。或者,采用气体和溶液相处理技术来实现连续表面变化,如核心壳结构。本次审查详细分析了现场当前最先进的现场,同时识别改善TE材料性能的可能性和障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号