首页> 外文期刊>Advanced energy materials >Liquid Metal-Organic Frameworks In-Situ Derived Interlayer for High-Performance Solid-State Na-Metal Batteries
【24h】

Liquid Metal-Organic Frameworks In-Situ Derived Interlayer for High-Performance Solid-State Na-Metal Batteries

机译:原位液体金属 - 有机框架用于高性能固态NA金属电池的原位衍生的中间层

获取原文
获取原文并翻译 | 示例
           

摘要

Despite recent progress in solid-state Na-metal batteries (SSNBs) based on inorganic solid-state electrolytes (SSEs), Na dendrite propagation due to interfacial Na+ transport inhomogeneity and heterogeneous Na stripping/plating processes, greatly hinders the improvement of the cycling stability of SSNBs. Herein, the characteristics and propagation mechanism of Na dendrite growth in SSNBs are comprehensively analyzed. Confronted with Na dendrites, a novel strategy is developed to in-situ modify a SSE surface with a liquid metal-organic frameworks (MOFs) precursor. The interlayer is directly obtained from high-temperature monophasic liquid MOFs, not interfering with intermediate recrystallization, thus endowing superior uniformity. It can improve interfacial compatibility with the Na-anode and homogenize e(-)/Na+ transport kinetics, leading to spatially even Na nucleation and thus a transition of Na deposition behavior from dendrites to a lateral flat-shape growth tendency. Furthermore, the obtained sodiophilicity interlayer shows isotropous and stable characteristics to alleviate stress/strain and maintain excellent interfacial stability during cycling. Therefore, the assembled Na symmetric batteries demonstrate a top-level time-terminated critical current density of 1.0 mA cm(-2), and the integrated full cells show a stable cycling performance for 500 cycles at 1 C. The presented liquid MOFs in-situ derived strategy to suppress dendrites propagation is expected to be promising for other solid-state batteries.
机译:尽管基于无机固态电解质(SSES)的固态Na金属电池(SSNB)进行了最近的进展,但由于界面Na +运输不均匀性和异质Na汽提/电镀工艺,Na树突式传播,极大地阻碍了循环稳定性的提高SSNBS。本文,综合分析了SSNB中Na树枝状生长的特征和繁殖机制。面对Na Dendrites,一种新的策略是用液态金属 - 有机框架(MOF)前体的原位改变SSE表面。中间层是从高温单相液体MOF获得的,不干扰中间重结晶,从而赋予优异的均匀性。它可以改善与Na-anode的界面相容性并均化E( - )/ Na +传输动力学,导致空间甚至Na成核,从而从枝晶中的Na沉积行为转变为横向扁平的生长趋势。此外,所获得的SodIphilicity中间层显示出在循环期间减轻应力/菌株并保持优异的界面稳定性的各异脱发和稳定的特性。因此,组装的NA对称电池证明了1.0 mA cm(-2)的顶层时间终止临界电流密度,并且集成的全细胞在1℃下显示500次循环的稳定循环性能。所呈现的液体MOF - 抑制树突传播的原位衍生策略预计将为其他固态电池承诺。

著录项

  • 来源
    《Advanced energy materials》 |2021年第47期|2102396.1-2102396.11|共11页
  • 作者单位

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

    Southern Univ Sci & Technol Dept Chem Shenzhen 518055 Peoples R China;

    Shandong Univ Sch Mat Sci & Engn Minist Educ Key Lab Liquid Solid Struct Evolut & Proc Mat Jinan 250061 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anode-electrolyte interface; liquid MOFs; Na dendrites; Na-metal batteries; solid-state electrolytes;

    机译:阳极电解质界面;液体MOF;NA树枝状;NA-金属电池;固态电解质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号