首页> 外文期刊>Advanced energy materials >Rational Design of Nickel Hydroxide-Based Nanocrystals on Graphene for Ultrafast Energy Storage
【24h】

Rational Design of Nickel Hydroxide-Based Nanocrystals on Graphene for Ultrafast Energy Storage

机译:石墨烯上基于氢氧化镍的纳米晶体的超快储能的合理设计

获取原文
获取原文并翻译 | 示例
       

摘要

Compact, light, and powerful energy storage devices are urgently needed for many emerging applications; however, the development of advanced power sources relies heavily on advances in materials innovation. Here, the findings in rational design, one-pot synthesis, and characterization of a series of Ni hydroxide-based electrode materials in alkaline media for fast energy storage are reported. Under the guidance of density functional theory calculations and experimental investigations, a composite electrode composed of Co-/Mn-substituted Ni hydroxides grown on reduced graphene oxide (rGO) is designed and prepared, demonstrating capacities of 665 and 427 C g(-1) at current densities of 2 and 20 A g(-1), respectively. The superior performance is attributed mainly to the low deprotonation energy and the facile electron transport, as elaborated by theoretical calculations. When coupled with an electrode based on organic molecular-modified rGO, the resulting hybrid device demonstrates an energy density of 74.7 W h kg(-1) at a power density of 1.68 kW kg(-1) while maintaining capacity retention of 91% after 10,000 cycles (20 A g(-1)). The findings not only provide a promising electrode material for high-performance hybrid capacitors but also open a new avenue toward knowledge-based design of efficient electrode materials for other energy storage applications.
机译:许多新兴应用迫切需要紧凑,轻便,功能强大的储能设备。但是,先进电源的开发在很大程度上取决于材料创新的进步。在此,报告了在碱性介质中进行快速能量存储的合理设计,一锅合成和表征一系列氢氧化镍基电极材料的发现。在密度泛函理论计算和实验研究的指导下,设计并制备了由在还原氧化石墨烯(rGO)上生长的Co- / Mn取代的Ni氢氧化物组成的复合电极,其显示的容量为665和427 C g(-1)电流密度分别为2和20 A g(-1)。优异的性能主要归因于低的质子化能量和便捷的电子传输,如理论计算所详述。当与基于有机分子修饰的rGO的电极耦合时,所得混合设备在1.68 kW kg(-1)的功率密度下显示出74.7 W h kg(-1)的能量密度,而之后的容量保持率保持在91% 10,000次循环(20 A g(-1))。这些发现不仅为高性能混合电容器提供了有希望的电极材料,而且为面向知识的其他储能应用高效电极材料的设计开辟了新途径。

著录项

  • 来源
    《Advanced energy materials》 |2018年第9期|1702247.1-1702247.10|共10页
  • 作者单位

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Fujian, Peoples R China;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Fujian, Peoples R China;

    Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cation substitution; graphene; hydroxides; nanostructures; supercapacitors;

    机译:阳离子取代;石墨烯;氢氧化物;纳米结构;超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号