首页> 外文期刊>Advanced energy materials >Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors
【24h】

Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors

机译:将生物质化学剥落成具有合理孔隙结构,良好电导率和大表面积的石墨烯状多孔活性炭,以用于高性能超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Active carbons have unique physicochemical properties, but their conductivities and surface to weight ratios are much poorer than graphene. A unique and facile method is innovated to chemically process biomass by drilling holes with H2O2 and exfoliating into graphene-like nanosheets with HAc, followed by carbonization at a high temperature for highly graphitized activated carbon with greatly enhanced porosity, unique pore structure, high conductivity, and large surface area. This graphene-like carbon exhibits extremely high specific capacitance (340 F g(-1) at 0.5 A g(-1)) and high specific energy density (23.33 to 16.67 W h kg(-1)) with excellent rate capability and long cycling stability (remains 98% after 10 000 cycles), which is much superior to all reported carbons including graphene. Synthesis mechanism for deriving biomass into porous graphene-like carbons is discussed in detail. The enhancement mechanism for the porous graphene-like carbon electrode reveals that rationally designed meso- and macropores are very critical in porous electrode performance, which can network micropores for diffusion freeways, high conductivity, and high utilization. This work has universal significance in producing highly porous and conductive carbons from biomass including biowastes for various energy storage/conversion applications.
机译:活性炭具有独特的理化特性,但其电导率和表面重量比比石墨烯差得多。创新了一种独特且简便的方法来化学处理生物质,方法是在H2O2上钻孔并用HAc剥落成石墨烯状纳米片,然后在高温下碳化以获得高度石墨化的活性炭,从而大大提高孔隙率,独特的孔结构,高电导率和大的表面积。这种石墨烯状碳表现出极高的比容量(0.5 A g(-1)时为340 F g(-1))和高比能量密度(23.33至16.67 W h kg(-1)),具有出色的速率能力和长寿命循环稳定性(万次循环后仍保持98%),远优于所有报道的碳(包括石墨烯)。详细讨论了将生物质转化为多孔石墨烯状碳的合成机理。多孔石墨烯状碳电极的增强机理表明,合理设计的中孔和大孔对多孔电极的性能至关重要,可以使微孔网络化以实现扩散,高电导率和高利用率。这项工作对于从包括生物废料在内的生物质生产高度多孔和导电的碳具有普遍意义,包括各种能源存储/转换应用。

著录项

  • 来源
    《Advanced energy materials》 |2018年第11期|1702545.1-1702545.9|共9页
  • 作者单位

    Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China;

    Chongqing Univ, Coll Chem & Chem Engn, Chongqing 400044, Peoples R China;

    Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China;

    Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China;

    Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China;

    Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    active carbons; biomass; chemical exfoliation; graphene-like; supercapacitors;

    机译:活性炭;生物质;化学剥落;类石墨烯;超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号