首页> 外文期刊>Advanced energy materials >Sodium Passivation of the Grain Boundaries in CuInSe2 and Cu2ZnSnS4 for High-Efficiency Solar Cells
【24h】

Sodium Passivation of the Grain Boundaries in CuInSe2 and Cu2ZnSnS4 for High-Efficiency Solar Cells

机译:高效太阳能电池CuInSe2和Cu2ZnSnS4中晶界的钠钝化

获取原文
获取原文并翻译 | 示例
           

摘要

It is well known that sodium at grain boundaries (GBs) increases the photovoltaic efficiencies of CuInSe2 and Cu2ZnSnS4 significantly. However, the mechanism of how sodium influences the GBs is still unknown. Based on the recently proposed self-passivation rule, it is found that the dangling bonds in the GBs can completely be saturated through doping the Na, thus GB states are successfully passivated. It is shown that the Na can easily incorporate into the GB with very low formation energy. Although Cu can also passivate the GB states, it requires a copper rich condition which, however, suppresses the formation of copper vacancies in the bulk and thus decreases the concentration of hole carriers, so copper passivation is practically not as beneficial as sodium. The present work reveals the mechanism about how the Na enhances the photovoltaic performance through passivating the dangling bonds in the GBs of chalcogenide semiconductors, and sheds light on how to passivate dangling bonds in GBs with alterative processes.
机译:众所周知,晶界(GBs)处的钠会大大提高CuInSe2和Cu2ZnSnS4的光电效率。但是,钠如何影响GBs的机制仍然未知。基于最近提出的自钝化规则,发现通过掺杂Na可以使GB中的悬空键完全饱和,从而成功地钝化了GB状态。结果表明,Na可以很低的形成能很容易地掺入GB中。尽管Cu也可以钝化GB态,但是它需要富铜条件,但是它抑制了主体中铜空位的形成,从而降低了空穴载流子的浓度,因此铜钝化实际上不如钠好。本工作揭示了Na如何通过钝化硫族化物半导体GB中的悬空键来增强光伏性能的机制,并阐明了如何通过交替工艺钝化GBs中的悬空键。

著录项

  • 来源
    《Advanced energy materials》 |2017年第8期|1601457.1-1601457.8|共8页
  • 作者单位

    Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China|Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China|Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China|Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    East China Normal Univ, Lab Polar Mat & Devices, Shanghai 200241, Peoples R China;

    Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China|Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China|Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    grain boundary; photovoltaic efficiency; semiconductor;

    机译:晶界;光伏效率;半导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号