首页> 外文期刊>Advanced energy materials >Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials
【24h】

Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials

机译:多元地球上富含硫族化物的光伏材料中的缺陷工程

获取原文
获取原文并翻译 | 示例
           

摘要

Application of zinc-blende-related chalcogenide absorbers such as CdTe and Cu(In,Ga)Se-2 (CIGSe) has enabled remarkable advancement in laboratory-and commercial-scale thin-film photovoltaic performance; however concerns remain regarding the toxicity (CdTe) and scarcity (CIGSe/ CdTe) of the constituent elements. Recently, kesterite-based Cu2ZnSn(S,Se)(4) (CZTSSe) materials have emerged as attractive non-toxic and earth-abundant absorber candidates. Despite the similarities between CZTSSe and CIGSe/ CdTe, the record power conversion efficiency of CZTSSe solar cells (12.6%) remains significantly lower than that of CIGSe (22.6%) and CdTe (22.1%) devices, with the performance gap primarily being attributed to cationic disordering and associated band tailing. To capture the promise of kesterite-like materials as prospective "drop-in" earth-abundant replacements for closely-related CIGSe, current research has focused on several key directions to control disorder, including: (i) examination of the interaction between processing conditions and atomic site disorder, (ii) isoelectronic cation substitution to introduce ionic size mismatch, and (iii) structural diversification beyond the zinc-blende-type coordination environment. In this review, recent efforts targeting accurate identification and engineering of anti-site disorder in kesterite-based CZTSSe are considered. Lessons learned from CZTSSe are applied to other complex chalcogenide semiconductors, in an effort to develop promising pathways to avoid anti-site disordering and associated band tailing in future high-performance earth-abundant photovoltaic technologies.
机译:诸如CdTe和Cu(In,Ga)Se-2(CIGSe)之类的与锌共混物相关的硫族化物吸收剂的应用使实验室和商业规模的薄膜光伏性能有了显着的进步。然而,人们仍然担心构成元素的毒性(CdTe)和稀缺性(CIGSe / CdTe)。近来,基于钾长石的Cu2ZnSn(S,Se)(4)(CZTSSe)材料已经成为有吸引力的无毒且富含地球的吸收剂候选材料。尽管CZTSSe和CIGSe / CdTe之间有相似之处,但CZTSSe太阳能电池的创纪录功率转换效率(12.6%)仍远低于CIGSe(22.6%)和CdTe(22.1%)器件,其性能差距主要归因于阳离子紊乱和相关的带拖尾。为了捕捉像钾盐石一样的材料作为密切相关的CIGSe的潜在“替代性”地球替代物的希望,当前的研究集中在控制疾病的几个关键方向,包括:(i)检查加工条件之间的相互作用原子位错;(ii)等电阳离子取代,以引入离子尺寸失配;(iii)超出锌-布兰德型配位环境的结构多样化。在这篇综述中,考虑了针对基于酯基CZTSSe的抗位点紊乱的准确鉴定和工程化的最新努力。从CZTSSe中学到的经验教训已被应用于其他复杂的硫族化物半导体,以期开发出有希望的途径,以避免在未来的高性能地球上光伏技术中出现反位乱和相关的带拖尾现象。

著录项

  • 来源
    《Advanced energy materials》 |2017年第11期|1602366.1-1602366.29|共29页
  • 作者单位

    Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA|Duke Univ, Dept Chem, Durham, NC 27708 USA;

    Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA|Duke Univ, Dept Chem, Durham, NC 27708 USA|Univ Oklahoma, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA;

    Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA|Duke Univ, Dept Chem, Durham, NC 27708 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号