首页> 外文期刊>Advanced energy materials >Pushing the Energy Output and Cyclability of Sodium Hybrid Capacitors at High Power to New Limits
【24h】

Pushing the Energy Output and Cyclability of Sodium Hybrid Capacitors at High Power to New Limits

机译:将高功率钠混合电容器的能量输出和可循环性推向新的极限

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid capacitors, especially sodium hybrid capacitors (NHCs), have continued to gain importance and are extensively studied based on their excellent potential to serve as advanced devices for fulfilling high energy and high power requirements at a low cost. To achieve remarkable performance in hybrid capacitors, the two electrodes employed must be superior with enhanced charge storage capability and fast kinetics. In this study, a new sodium hybrid capacitor system with a sodium super ionic conductor NaTi2(PO4)(3) grown on graphene nanosheets as an intercalation electrode and 2D graphene nanosheets as an adsorption electrode is reported for the first time. This new system delivers a high energy density of approximate to 80 W h kg(-1) and a high specific power of 8 kW kg(-1). An ultralow performance fading of approximate to 0.13% per 1000 cycles (90%-75 000 cycles) outperforms previously reported sodium ion capacitors. The enhanced charge transfer kinetics and reduced interfacial resistance at high current rates deliver a high specific energy without compromising the high specific power along with high durability, and thereby bridge batteries and capacitors. This new research on kinetically enhanced NHCs can be a trendsetter for the development of advanced energy storage devices requiring high energy-high power.
机译:混合电容器,尤其是钠混合电容器(NHC),一直在变得越来越重要,并且由于其作为低成本先进器件来满足高能量和高功率要求的潜力而得到了广泛的研究。为了在混合电容器中获得卓越的性能,所采用的两个电极必须具有优异的电荷存储能力和快速的动力学性能。在这项研究中,首次报道了一种新的钠杂化电容器系统,其中钠超离子导体NaTi2(PO4)(3)生长在石墨烯纳米片上作为嵌入电极,二维石墨烯纳米片作为吸附电极。该新系统可提供约80 W h kg(-1)的高能量密度和8 kW kg(-1)的高比功率。每1000个周期(90%-75 000个周期)约有0.13%的超低性能衰减优于以前报道的钠离子电容器。高电流速率下增强的电荷转移动力学和降低的界面电阻可在不损害高比功率和高耐用性的情况下提供高比能量,从而桥接电池和电容器。动力学增强的NHC的这项新研究可以成为开发要求高能量,高功率的先进能量存储设备的趋势。

著录项

  • 来源
    《Advanced energy materials》 |2017年第14期|1602654.1-1602654.10|共10页
  • 作者单位

    Chonnam Natl Univ, Fac Appl Chem Engn, Gwang Ju 500757, South Korea;

    Korea Adv Inst Sci & Engn, Dept Mat Sci & Engn, Daejeon 305701, South Korea;

    Korea Adv Inst Sci & Engn, Dept Mat Sci & Engn, Daejeon 305701, South Korea;

    Chonnam Natl Univ, Fac Appl Chem Engn, Gwang Ju 500757, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号